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This document offers extended information and further results of DPIR, complementing the main paper.
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1. Network Architecture
Figure S1 shows the overall structure of of our DPIR network architecture which consists of four MLPs: (a) geometry network
ΘSDF, (b) diffuse albedo network Θd, (c) specular basis coefficient network Θc, (d) specular basis network Θs.
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Figure S1. Network architecture. To compute point radiance, we estimate surface normal, diffuse albedo, and specularity using MLPs.
Here, each block represents the fully-connected layer with its size of the hidden channel written at the top of the block. We use Softplus
activation layer for ΘSDF and ReLU activation layer for the other networks. ⊕ denotes skip connection that concatenates its output features
with the input.

1.1. Geometry Network

We use 8-layer MLPs of width 256 for SDF values and geometric features with skip connection at the 4th layer. We add po-
sitional encoding for input 3D point position x using 6 frequency components to train high frequency information. Positional
encoding for point location x is represented as γ(x).

1.2. Diffuse Albedo Network

We use 4-layer MLPs of width 256 for diffuse albedo with skip connection at the 2nd layer. We add positional encoding
for input 3D point position x using 10 frequency components. Diffuse albedo network also utilizes SDF-based geometric
features as input concatenated with positional-encoded point location.

1.3. Specular Basis Coefficient Network

We use the same network architecture with diffuse albedo network. Specular basis coefficient network outputs 1 channel
regularized values which are combinated with specular bases to compute specularity.

1.4. Specular Basis Network

We use 4-layer MLPs of width 128 for specular basis without skip connection. We compute SDF normal of each point and
calculate half-way vector h considering viewing direction and light direction. We can represent isotropic BRDF with two
parameters (θh, θd) following [2, 3], where θh = arccos(nTh), θd = arccos(vTh). We take the cosine value of these
values and add positional encoding for two variables using 4 frequency components. Positional encoding for half-angle
vectors a is represented as γ(a).



2. Loss Functions
We optimize point positions x, point radii r, and MLPs for SDF ΘSDF, diffuse albedo Θd, specular coefficient Θc, and
specular-basis Θs by minimizing the following loss function:

L2 + λssimLssim + λSDFLSDF + λcLc + λmLm. (1)

Here, L2 is the l2 loss for the reconstructed image I
′

and the observed image I . Lssim is the differentiable SSIM loss
which considers luminance, contrast, structure for I

′
and I . Our fast splatting-based forward rendering allows DPIR to

utilize SSIM loss, which is often omitted in other rendering methods due to its long computation time, resulting better
reconstruction quality. LSDF is to promote the zero-level set of SDF exists near explicit point positions, combining discrete
point representation with continuous SDF. Lc regularizes l1 norm of estimated per-point specular coefficients to be ϵ. Specular
coefficients are constrained to be positive and under ϵ. Lm is the l2 loss for the reconstructed mask and the ground truth mask.
Reconstructed mask image is rendered by point-based splatting with radiance of 1 for all points. We set λssim, λSDF, λc and
λm as 0.2, 1.0, 0.1 and 0.1, respectively.

3. Optimization Techniques
3.1. Mask-based Point Initialization

For point cloud initialization, we employ rejection sampling method which samples 3D points uniformly, project these points
on each image plane, and let them fall within all the masks [6]. Mask-based point initialization provides coarse geometry
for efficient and stable optimization, thus DPIR reconstruction quality is dependent on the accuracy of the mask inputs. We
show ablation study that mask inputs improves reconstruction quality while DPIR can obtain plausible reconstruction result
without mask.

3.2. Coarse-to-fine Updates

Our method adopts coarse-to-fine updates to learn accurate point cloud representations for geometry and reflectance. First, we
employ a voxel discretization to combine points within same voxel into one single point. Second, we compute the distances
between aggregated points and standard deviation of these distances. We then remove outliers whose standard deviation is
beyond threshold. Voxel-based downsampling enables pruning of superfluous points. After we prune unnecessary points,
we insert new points into the point cloud by upsampling remained point representations with same parameters. We repeat
these stages for 5 times to achieve coarse-to-fine updates with stable and fast training. Both of mask-based initialization and
coarse-to-fine updates are inspired by [6].

3.3. Training

To train our DPIR method, we empirically choose sampling rate of the number of initialized points and the initialized point
radius considering the size of each object. We train 40 epochs for every stage and do not consider visibility at the first stage.
Our DPIR method is trained for 7 stages which take 2 hours to converge. We use Adam as optimizer and set the initial
learning rate for the point parameters and network parameters as 1e-4 and 5e-4, respectively. Both of learning rates are
decayed exponentially for every epoch with a factor of 0.93. We use PyTorch and test DPIR on a single NVIDIA RTX 3090
GPU.

4. Dataset
4.1. DiLiGenT-MV

We test our DPIR method on DiLiGenT-MV, multi-view multi-light image dataset which is often used for evaluating multi-
view photometric stereo. DiLiGenT-MV dataset consists of 5 objects, called Bear, Buddha, Cow, Pot2, Reading. For each
object, images are captured under horizontally rotated 20 cameras with same angle and same elevation. For each view, 96
images are captured under different single directional light source with different light intensity. We preprocessed images to
make low intensity images brighter by normalizing images according to the ground truth light intensity. We also cropped
the original images with 612 × 512 into 400 × 400 to remove empty background region for efficiency. Our pre-processed
dataset followed the instructions from PS-NeRF [4].



4.2. Synthetic Photometric Dataset

We also test our DPIR method on synthetic photometric dataset, following the configuration of mobile flash photography [5].
We rendered 4 objects, called Dragon, Head, Horse, Maneki, with Blender using mesh and image texture data from IRON [5].
We rendered 300 views images with co-located point lights and used 200/100 views for training/testing, respectively. It took
around 3 hours to render ground truth images and normal for 300 views.

5. Additional Ablation Study

Multi-view multi-light dataset Photometric dataset
Method PSNR ↑ SSIM ↑ LPIPS ↓ MAE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MAE ↓

Proposed 36.73 0.9822 0.0091 7.16 35.56 0.9734 0.0285 8.74
w/o vis 35.17 0.9756 0.0126 9.57 x x x x

w/o SDF 33.39 0.9704 0.0156 21.89 34.55 0.9655 0.0378 19.42
w/o radii 26.62 0.9616 0.0392 10.48 35.48 0.9740 0.0295 8.77
w/o Lssim 32.97 0.9738 0.0132 9.01 34.75 0.9718 0.0373 10.32

basis 1 36.12 0.9816 0.0096 7.41 35.12 0.9712 0.0303 9.31
basis 5 36.44 0.9820 0.0094 7.22 35.45 0.9731 0.0287 8.76

basis 13 36.40 0.9821 0.0092 7.11 35.41 0.9732 0.0283 8.77

Table S1. Quantitative comparison of ablation studies for multi-view multi-light dataset and photometric dataset.

5.1. Point-based Shadow Detection

We evaluate the importance of the point-based visibility test of DPIR. Note that visibility of every point is set to 1 on
photometric dataset as the light source and the camera are co-located. Table S1 shows that point-based shadow detection
method improves both image and normal reconstruction quality. Especially, normal estimation of self-occluded region is
enhanced.

5.2. Hybrid Shape Representation

We evaluate the impact of hybrid point-volumetric shape representation. Table S1 shows that using only point representation
and per point normal for inverse rendering recurs inaccurate reconstruction. Our hybrid point-volumetric representation
improves normal reconstruction quality by sampling surface normals of discrete points from continuous SDF

5.3. Dynamic Point Radius

We evaluate the impact of point radius optimization. Table S1 shows that learning not only the point position but also
point radius enables accurate geometry reconstruction for low and high frequency details. Dynamic point radius shows
reconstruction improvement of large margin especially on multi-view multi-light dataset.

5.4. Number of Basis

We evaluate the impact of the number of specular basis. Table S1 and Figure S2 show that using 9 bases provides a converged
accuracy in a tested scene. Using few specular basis such as one and five results in inaccurate reconstructions. The number
of specular basis is related to the representation power of specularity and normal.

 GT(default)

Figure S2. Impact of the number of specular basis. Increasing the number of specular basis improves reconstruction quality and here
using nine bases shows converged performance.



5.5. Impact of SSIM Loss

We evaluate the importance of SSIM loss which is computationally expensive. Our DPIR method adopts SSIM loss for better
reconstruction based on fast splatting-based rendering. It requires 0.15× additional training time, while improving image
and normal reconstruction quality for a large margin.

5.6. Number of Training Views and Lights

Table S2 shows the normal reconstruction accuracy with varying number of training views and lightings. We found that the
number of views plays an important role while the light gives a smaller impact when the number of training lights exceeds
16. Our method can achieve state-of-the-art reconstruction result when trained with only 16 lights.

4 Lightings 10 Lightings 16 Lightings 30 Lightings
5 Views 22.78 18.89 17.02 15.53
10 Views 19.04 13.69 11.53 10.05
15 Views 14.63 10.15 8.88 8.22

Table S2. Impact of the number of views and lightings for ”Reading”, in terms of normal reconstruction with MAE.

5.7. Threshold τ for visibility test

We assumed that points are located inside a unit cube according to the given camera parameters of real-world dataset: τ
is defined in a normalized scale. Table S3 shows that τ = 0.1 leads to overall lower normal reconstruction error in MAE
than τ = 0.2 and τ = 0.05. Hence, we chose τ = 0.1. Our joint optimization provides accurate reconstruction of depth,
reflectance, and normal, resulting in accurate visibility.

Bear Buddha Cow Pot2 Reading
Scene MAE ↓ MAE ↓ MAE ↓ MAE ↓ MAE ↓
τ = 0.2 4.62 11.37 4.48 6.63 9.21
τ = 0.05 6.30 14.78 4.66 6.54 9.37
τ = 0.1 4.35 11.10 4.61 6.71 9.03

Table S3. Ablation study for point-based visibility test threshold.

5.8. Mask Dependency

DPIR utilizes mask inputs for point location initialization and mask loss. Our method often achieves plausible reconstruc-
tion results even without masks inputs which show the potential applicability of DPIR for larger-scale scene. For complex
geometry object, our point locations diverge as shown in Figure S3, meaning our optimization techniques are incomplete.
Developing our optimization techniques for complex scene without mask inputs is our future work.
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Figure S3. Importance of mask inputs. We test our DPIR without mask inputs, initializing point positions with randomly sampled points
inside unit sphere. For complex scene as ”Dragon”, point positions are noisy and diverge.



6. Additional Discussions
6.1. Specular Basis BRDFs and Specular Coefficients

We utilize regularized basis BRDF representation to estimate accurate spatially-varying BRDFs from limited light-view
angular samples. Figure. S4 shows visualization of spatially-varying BRDFs, specular basis BRDFs, and specular coefficients
of ”Cow”. Specular basis BRDFs for gold appearance have high specular coefficients for body region. Specular basis BRDFs
for silver appearance have high specular coefficients for horn region. Specular coefficients for diffuse dominant region as red
and yellow have low intensity of specular basis BRDFs.

(b) Specular basis BRDFs and specular coefficients of Cow

A B C D E
A

B
C

D

E

0.00 0.100.05

(a) Spatially-varying BRDFs of Cow

Figure S4. Estimated spatially-varying BRDFs, specular basis BRDFs, and specular coefficients. We visualize the BRDFs on unit
spheres illuminated by a point light source. (a) shows spatially-varying BRDFs of ”Cow” with diverse appearance. (b) shows specular
basis BRDFs and corresponding specular coefficients.



6.2. Evaluation Metrics with Mask

For fair quantitative comparison between different baselines, mask computation performs critically especially on the mean
angular error (MAE). We used rendered mask region for calculating the MAE, while mask estimation of each baseline is
different with ground-truth mask. We calculate the MAE with rendered normal and ground-truth normal using rendered
mask. Image reconstruction metrics (PSNR, SSIM, LPIPS) are calculated with white background images.

6.3. Specularity with Shading

We visualize specularity image with shading which denotes cosine value between normal and light direction. Our DPIR
method computes the point radiance with point BRDF and shading. Thus, we render specularity image by computing point
radiance consisting of specular BRDF and shading. Figure. S5 shows ablation study with shading.
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Figure S5. Specularity images with and without shading. Specularity images without shading have more artifacts at the edge of the
object, while specularities are more stable with shading.

7. Additional Results
7.1. Gaussian-based Inverse Rendering

We compare DPIR with concurrent work: Gaussian-based inverse rendering method, Rel-GS [1]. Rel-GS takes images
captured under a constant environment map, similar to PhySG and TensoIR. To meet its input requirements, we use multi-
light averaged images and compare Rel-GS with DPIR. Table S4 shows that DPIR outperforms Rel-GS in rendering quality
and normal accuracy.

Multi-view multi-light dataset
Method PSNR ↑ SSIM ↑ LPIPS ↓ MAE ↓
Rel-GS 31.18 0.9687 0.0254 21.54
DPIR 38.83 0.9908 0.0038 7.16

Table S4. Comparison between DPIR and Rel-GS

7.2. Additional Visualization of Normals and Albedo for Figure 8

Figure 8 in the main paper shows the rendered images, not the albedo. Figure S6 shows both normals and albedo of the same
scene, where details can be seen at both normals and albedo.

Without SDF With SDF

Normal Albedo Normal Albedo

Figure S6. Impact of hybrid shape representation.



7.3. Environment Map Relighting

Our DPIR method allows environment map relighting by integrating reflected radiance for each light source in the environ-
ment map. In Fig. S7, ”Bear”, ”Buddha”, ”Cow”, ”Pot2” and ”Reading” are rendered with different environment map. They
show faithful relighting results based on the environment map.

(a) Environment map 1 relighting

(b) Environment map 2 relighting

Figure S7. Environment map rendering. We render various objects with two environment maps. Both of rendering results show faithful
relighting by reconstructed surface normals, spatially varying BRDFs, and visibility.

7.4. Additional Results with Multi-view Multi-light Dataset

Figure S8 shows visualization of all objects from DiLiGenT-MV dataset. Our DPIR method achieves the best shape and
material reconstruction results with multi-view multi-light dataset. Hence, we provide the visualization of the rendered
image, estimated normal, diffuse albedo, specularity, visibility, and depth map. It demonstrates that our method is robust
to diverse shapes and materials in real-world objects. Figure S9 shows novel view relighting of 5 view points and 8 light
directions.



C
ow

Rendered imageDepthNormal Diffuse albedo Specularity Visibility map GT 

B
ud

dh
a

B
ea

r

GT Normal

P
ot

2
R

ea
di

ng

Figure S8. Reconstruction results of DiLiGenT-MV objects. We visualize rendered image, normal, diffuse albedo, specularity, visibility
map, depth map with ground-truth normal and image. We perform novel-view relighting with various view points and lightings. In ”Bear”,
the object has smooth surface, and visibility maps are well estimated with point-based shadow detection. ”Buddha” has complex geometry
and produces self-occlusion at head region. In ”Cow”, the object consists of metal and has difficulty in reconstructing eye region. In
”Pot2”, high frequency details are well reconstructed such as top and leaf of the object. ”Reading” has concave geometry and produces
high specular effects. Our DPIR method shows high quality surface and material reconstruction. We scale ”Cow” and ”Pot2” images
brighter using gamma
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Figure S9. Novel view relighting. We visualize rendered images of 5 novel view points and 8 novel light sources. Our DPIR method
achieves faithful reconstruction of shape and material for untrained scene. We scale up reconstructed images and ground-truth images for
visualization.



7.5. Additional Results with Photometric Dataset
Figure S10 shows visualization of all objects from synthetic photometric dataset. Our DPIR method achieves the state-
of-the-art reconstruction results on different views with co-located point lights. Both of evaluations with different datasets
demonstrate that our method is applicable to diverse illumination settings with flexible number of view points. Small number
of view points can be compensated by the number of illuminations.
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Figure S10. Reconstruction results of photometric dataset. We perform novel-view relighting on various view points with co-located
point lights.
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