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1. Additional Results

Details about the datasets. We utilize three popular
datasets in the research field of GAN: FFHQ, LSUN
Church, LSUN Horse. FFHQ [4] contains 70, 000 hu-
man facial images with a resolution of 1024 × 1024, and
we also test on its resized version with a resolution of
256× 256. LSUN Church [10] comprises 126, 227 outdoor
church images with a resolution of 256 × 256, and LSUN
Horse [10] includes 2 million horse images with a resolution
of 256× 256. However, in alignment with the experimental
setting of StyleGAN2, we only utilize a subset of 1 million
images from the LSUN Horse dataset.

Image editing results of our compressed generator. We
perform various real-world tasks, including style mixing,
style interpolation, and latent editing using GANSpace [2]
and StyleCLIP [8], as shown in Fig. 1.

For style mixing, we define coarse, middle, and fine lay-
ers as [0:2]th, [4:7]th, and [9:12]th layers, respectively, fol-
lowing baseline [9]. In this process, we inject each level
of latent code from image B into image A. As in fine layer
injection, our model successfully transplants the tone from
image B while preserving the identity of image A.

For style interpolation, we perform linear interpolation
between the inverted latent codes (wA, wB) to generate
style-interpolated images; winterp = wA × (1− β) + wB ×
β, β ∈ [0, 1]. StyleKD shows a glasses artifact in the in-
terpolated image despite neither image A nor B wearing
the glasses. Another baseline, CAGAN shows low-quality
inversion and interpolated images. In contrast, our model
shows high-quality editing results that are similar to the
teacher model.

For editing via GANSpace, we identify the important
latent directions using PCA on 50,000 randomly sampled
w. Then, we edit the inverted real-world images using the
computed latent directions. As a result, we found 2th, 4th,
and 9th latent direction captures the attributes “Turn left”,
“Young”, and “Glasses”, and they are successfully applica-
ble for editing in the compressed generator. Furthermore,
we also confirmed that these directions are shared their se-
mantic changes regardless of latent code w.

Furthermore, we validate the suitability of the proposed
method in real-world applications, text-driven image edit-
ing. For experiments, we adopt the StyleCLIP [8] as edit-
ing method. As shown in Fig. 1, we observe that the com-
pressed generator successfully works for both tasks, invert-
ing and editing on the given real-world images and various
input text prompts. These experimental results confirm the

Table 1. Actual speed comparison with teacher model. Our
compressed model significantly accelerates inference speed com-
pared to the teacher model.

Inference Time (ms) Teacher Ours
FFHQ-256 12.90 5.48 (2.35x)
FFHQ-1024 45.23 12.03 (3.76x)

generative capability of our compression technique and pro-
vide strong evidence for the practical applicability of our
compressed generator.

Actual speed gains. We measure the inference time per
image for synthesizing 1,000 images (with a batch size
of 4) on a single RTX 3070 GPU. The results are pre-
sented in the Tab. 1. In real-world scenarios, our pruning
model (pr = 0.7) achieves a substantial speedup of 2.35x
faster in 256 resolution and an impressive 3.76x faster in
1024 resolution compared to the teacher model. We did
not include the inference speeds of other baselines since the
number of parameters and FLOPs of our model is identi-
cal to theirs. These results highlight the significant com-
putational efficiency gained through our pruning approach,
showing its practical properties in real-world applications.

Projection examples of the real-world dataset. We pro-
vide the projection results for real samples from Helen-
Set55 [7]. Note that, these real-world images are not in-
cluded in our training dataset. Models trained on FFHQ-
1024 datasets are used for this experiment. As shown in
Fig. 2, we verify that our compressed models are able to
capture sufficient information about the real samples to re-
construct them.

Additional comparison for sample diversity. Diversity
refers to the generator’s capacity to produce varied images.
To assess this, we begin by sampling 5,000 images from
identical random latent vectors z for each model trained by
FFHQ-256 dataset. Next, we select a reference sample and
identify its nearest neighbors among the other sampled im-
ages, by measuring the L2 distance between these images.
A smaller L2 distance implies the generator is producing
similar images, whereas a larger value signifies diverse im-
age generation. This process is repeated for all 5,000 sam-
ples, enabling us to provide not only the minimum distance
but also the average and maximum distances for a compre-
hensive assessment of diversity.

Our model shows the largest distance between samples
among compressed GANs, as shown in Tab. 2. It implies
that our model generates more diverse samples from distinct
latent vectors.



Figure 1. Real image editing results by our model. (Upper part) middle: style mixing, right: interpolation, and (Lower part) GANSpace
and StyleCLIP examples. These results validate that our compressed GAN can be applied to real-world tasks.

Table 2. Minimum and average L2 average distance of each
generated image between the other generated images. Please
refer to the detailed calculations within the paragraph.

Minimum Average
Teacher 0.0449 0.1321

Ours 0.0437 0.1313
StyleKD 0.0427 0.1303
CAGAN 0.0424 0.1304

Additional generated samples from same noise input.
We provide an additional visual comparison between the
proposed method and baselines [7, 9]. Specifically, we syn-
thesize the samples from the identical noise input for every
methods on four datasets; FFHQ-256, FFHQ-1024, LSUN
Church, and LSUN Horse. As a result, the generated sam-
ples from ours are more visually similar to samples from
the teacher model compared to baselines, and this result is
achieved consistently regardless of the type of dataset and
its resolution, as shown in Fig. 3 and Fig. 4. Our method
exhibits a high similarity to the teacher-generated images
compared to the baselines. As a result, our model demon-

strates an enhanced capability to preserve sample diversity
of the teacher model.

2. Further Analysis

Visual transition as strength of perturbation changes.
We visually analyze the generated samples along with their
perturbed counterparts generated from various strength pa-
rameters of the perturbations (α). As shown in Fig. 6, se-
lecting α = 5, 10 yields the perturbed samples with a suffi-
cient magnitude of pixel-level changes in images. This ob-
servation aligns with our ablation study (“Ablation” section
in main manuscript), which demonstrates that α = 5, 10
is an adequate strength for perturbations as supported by
FIDearly metric. Specifically, our ablation study denotes that
the FIDearly metric values for α = 5, 10 (12.08 and 12.09,
respectively) are lower than α = 1 (13.50). Therefore,
when selecting the strength of perturbation changes, it is
crucial to ensure that there are significant visual transitions
in the perturbed samples to effectively capture the effects of
latent perturbations.

More experiments in other network structure (Fast-
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Figure 2. Projection examples of the real-world dataset. We visualize the real-world images from Helen-Set55 [7] and its projected
results. We use the generators trained on FFHQ-1024 datasets. The visual similarity between the real image and the projected one shows
that our compressed models have sufficient capability to express real samples. Note that, these real images are not included in our training
dataset.

Table 3. Comparison on FastGAN (pr = 0.5, 60K iters, 3 times)

FID ↓ Teacher Scratch StyleKD Ours

Dog (256) 52.05 ± 0.2 56.34 ± 0.3 55.10 ± 0.7 53.17 ± 0.3

Table 4. Ablation study of the image difference metric (220K iters)

Dataset L1 LPIPS Dataset L1 LPIPS

FFHQ-256 7.05 7.32 Horse-256 6.49 6.18

GAN). We conduct the other GAN architecture, Fast-
GAN [6], distinct from the structure of StyleGAN. As
shown in Tab. 3, proposed method shows superior perfor-
mance even in a different network structure, validating the
generalizability of the proposed method.

Utilization of LPIPS for capturing image difference. To
investigate the effects of distance measure, we additionally
conduct experiment that prunes channels with LPIPS as im-
age difference. As reported in Tab. 4, we observe that two
distance measures (L1, LPIPS) perform similarly. We hy-
pothesize that semantic perturbation we used (i.e. PCA di-
rections) already encourages the model to be aware of se-
mantics, although guidance consists of pixel-level L1 dis-
tance.

Table 5. Quantitative comparisons with baselines (pr = 0.5, 100K
iters, FFHQ-256 dataset)

Ours StyleKD CAGAN

FID ↓ 6.78 8.79 11.68

More examples for pruned and not-pruned channels be-
tween the Sµ and Sσ scores. In Fig. 7, we further visualize
channels in 5th layer following the experimental settings of
Fig. 5 in main manuscript. The 214th channel exhibits low
Sµ and high Sσ values with strong activation for 16th di-
rection, associating with hair length.

Comparison with a different pruning ratio. We train ours
and baseline methods up to 100K iters with pr = 0.5. The
proposed method demonstrates superior performance com-
pared to the baselines, as shown in Tab. 5.

An overview of our method’s implementations. Our
pruning implementation follows the stages outlined below:

1. Prepare the teacher model (f, g), along with the per-
turbation vector d.

2. Sample a latent vector w and its perturbed counterpart
(w + αd).



Teacher CAGAN* StyleKD* Ours Teacher CAGAN* StyleKD* Ours

Figure 3. Qualitative comparison with baselines on various datasets. For comparison, we visualize the generated samples from ours
and baselines [7, 9] in FFHQ-256, LSUN Church, and LSUN Horse datasets. Each half of the row corresponds to samples generated from
the same noise vector z.
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Figure 4. Qualitative comparison with baselines on the high-resolution dataset. For comparison, we visualize generated samples from
ours and baselines [7, 9] in FFHQ-1024 dataset. Each half of the row corresponds to samples generated from the same noise vector z.
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Figure 5. Qualitative comparison with baselines on StyleGAN3. For comparison, we visualize generated samples from ours and
baselines [7, 9] on StyleGAN3-T [5] in the FFHQ-256 dataset. Each half of the row corresponds to samples generated from the same noise
vector z.
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Figure 6. Visual transition as strength of perturbation changes. We first obtain three directional vectors (Dir.) using GANSpace [2].
Next, we generate the samples and their perturbed counterparts with the different strength parameters for the perturbations (α). When
α = 1, perturbed samples only show minor changes to identify the image difference that latent changes lead to. Conversely, when
α = 5, 10, the perturbed samples show sufficient pixel-level differences to detect the effect of latent variations. Similarly, our ablation
study (Sec. 4.4 in main manuscript) validates that α = 5, 10 are the proper strength of perturbations by achieving lower FIDearly metric.
Therefore, when selecting the strength of perturbation changes, it is crucial to ensure sufficient pixel-level differences in the perturbed
samples to effectively capture the effects of latent variations.

Figure 7. Additional examples for pruned channels (a) We provide additional scatter plot as same as Fig. 5 in main manuscript.
(b) The 214th channel exhibits high sensitivity to the 16th direction from PCA. (c) The 16th direction corresponds to an hair length related
perturbation. The Sµ score prunes the 214th channel, while the Sσ score preserves this channel, which demonstrates high sensitivity to the
hair length variations.

3. Generate two images g(w) and g(w + αd), and per-
form backpropagation from the loss Ldiff = |g(w)− g(w+
αd)|.

4. Accumulate the gradients Gperturb.
5. For 1,000 iterations, repeat steps 2 to 4.
6. Calculate the diversity-sensitive importance score Sσ

and prune channels based on this score.

Broader Impacts. In today’s social media landscape, the
generation of fake images of celebrities or sports stars using
generative models is a major concern. Our proposed com-
pression method not only address the computational chal-
lenges but also brings attention to the potential misuse of
such techniques. To mitigate the negative impact of fake

images, detection models [1, 3] offers a solution to mini-
mize the harm caused by these fake images. It is crucial to
also consider the ethical implications of such technologies
and promote responsible use to prevent malicious exploita-
tion.

Limitations. The proposed pruning method aims to pre-
serve the sample diversity of teacher network as much
as possible. Hence, the samples that can potentially dis-
turb the effective transfer of knowledge of teacher (e.g.
samples with degenerated quality) also can be preserved
in the student network. This may hinder the further im-
provement in the generation performance of student net-
work.
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