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1. Appendix
Ablation study for color transfer capability. To validate
the efficacy of the ablated methods for color transfer, we
employ the RGB-uv histogram proposed in HistoGAN [1]
to measure color transfer capability. Specifically, for a given
input image I , we convert it into the log-chroma space. For
example, choosing the R color channel as the primary and
normalizing by G and B yields:

IuR(x) = log(
IR(x) + ϵ

IG(x) + ϵ
), IvR(x) = log(

IR(x) + ϵ

IB(x) + ϵ
)

(1)
where the IR, IG, IB refer to the color channels of the im-
age I , ϵ is a small constant for numerical stability, and x is
the pixel index.

Then, they compute the intensity Iy(x) =√
I2R(x) + I2G(x) + I2B(x) for weighted scaling and

differentiable the histogram. The final histogram follows:

H(u, v, c) ∝ Σxk(Iuc(x), Ivc(x), u, v)Iy(x), (2)

where IuG, IvG, IuB , IvB are R and B color channels which
projected to the log-chroma space similar to Eq. 1, c ∈
{R,G,B}, and k(·) is a inverse-quadratic kernel.

We utilize the Histogram Loss [1] as a color similarity
metric which measures the Hellinger distance between the
histograms of stylized and style images.
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1
2
cs −H

1
2
s ∥2, (3)

where Hcs and Hs are color histograms of stylized and
style image, respectively, ∥ · ∥ is the standard Euclidean
norm, and H

1
2 denotes an element-wise square root. We

adopt the default configuration of HistoGAN [1]. For a de-
tailed description of the histogram loss, please refer to the
original HistoGAN paper [1].

As a result, we evaluate the efficacy of Initial Latent
AdaIN in color tone transfer. In Tab. 1, each proposed com-
ponent contributes to transfer the color tone of the given
style image. Especially, we confirm that the Initial La-
tent AdaIN prominently affects the for transferring of color
tones.

Qualitative comparison with ablation of attention tem-
perature scaling. To highlight the effects of attention tem-
perature scaling, we provide some examples of style trans-
fer results while ablating the attention scaling. As shown
in Fig. 1, we validate that the attention scaling makes the

Configuration Histogram Loss [1] ↓
A Ours (γ = 0.75, default) 0.2804
B - Style Injection 0.4637
C - Attention Scaling 0.3029
D - Initial Latent AdaIN 0.5235

Table 1. Ablation study for color transfer capability.

Figure 1. Qualitative comparison while ablating the attention tem-
perature scaling. Attention temperature scaling prevents blurry re-
sults and helps to keep the local textures in the style image. We
use γ = 0.3 for this experiment.

model to synthesize sharp images and well-preserve the pat-
terns in the given style image (e.g. stars in left example).
This experimental result confirms the significance of the
proposed attention temperature scaling method. Note that,
we use γ = 0.3 for this experiment, to keep the strong effect
of style transfer in visualization.

Quantitative comparison in the other set. In Tab. 2, we
conduct quantitative experiments on a new set of style-
content pairs (20 contents, 40 styles) randomly sampled
without any overlap with original images. As reported,
the performance enhancement of the proposed method still
holds, confirming hyperparameters are well-generalized.

LPIPS is affected by texture and color, as it is based on
CNN features [2]. To evalute the content and color indepen-
dently, we measure LPIPS-Grayscale and Histogram-loss in
supplementary against the recent and lowest ArtFID base-
lines (AesPA-Net, InST, AdaAttN). As reported in Tab. 2,
ours achieves lowest LPIPS-Grayscale, and highest color
similarity.

Analysis on feature space of query preservation. Fig. 2
visualizes features of Qc

t , Qs
t , Qcs

t , and Q̃cs
t for a style-

content pair. As shown, interpolated features (Q̃cs
t ) are lo-

cated in in-distribution nearby contents, since we gradually
combine content query (Qc

t ) and stylized one (Qcs
t ) along



Ours AesPA-Net AdaAttN InST

ArtFID 30.38 34.55 31.87 39.11
FID 18.87 21.09 19.21 20.46
LPIPS 0.528 0.563 0.576 0.822
LPIPS-Gray 0.417 0.443 0.450 0.731
Histogram-loss 0.303 0.321 0.331 0.653

Table 2. Quantitative comparison in newly sampled test set.
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Figure 2. t-SNE visualization of query in SA for a style-content
pair. Query of content, style, and stylized ones (Qcs

t and Q̃cs
t ) at

t=20 and 7th decoder layer are used for visualization.

ArtFID FID LPIPS-Gray
Ours (w/ empty prompt, default) 34.9 21.2 0.47

Ours (w/ BLIP prompt) 34.5 20.9 0.47

Table 3. Ablation study of the null text token in the diffusion pro-
cess.

with entire reverse process.
Furthermore, we compute the average distance of Q̃cs

t

toward top-5 Nearest Neighbors (NNs) in (content, style,
itself) and the number of them in NNs for all injected layers
with t=[10, 20, 30, 40]. Distances and # NNs are (5.49,
9.06, 4.43), (1.24, 0.00, 3.76), implying Q̃cs

t residing in in-
distribution nearby content.

Style transfer with text prompts. In this paragraph, We
exploit text prompt, obtained by BLIP [3], for DDIM inver-
sion instead of null text token. Images in ‘data vis’ in the
official repository are used, in which easy to caption as they
mostly consist of single object. As a result, ours w/ text
shows slight improvement as in Tab. 3.

User study. We compare ours with AesPA-Net and InST,
the most recent conventional and diffusion methods, for 18
users and 10 examples per user. We observe that (57.2%,
76.7%) of users prefer the proposed method over (AesPA-
Net, InST). Note that, ours has a much faster inference
speed than InST.

Qualitative comparison with StyleDiffusion. As the im-
plementation of StyleDiffusion [5] is unavailable, we com-
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Figure 3. Qualitative comparisons with diffusion-based baselines
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Figure 4. Qualitative comparison with StyleDiffusion. * denotes
cropped version of images. We use γ = 0.5 for visualization.

pare ours with examples in supplementary of StyleDiffu-
sion [5]. We obtain style-content pairs of StyleDiffusion in
repositories of their baselines. We observe that ours is more
suitable for transferring local textures, while StyleDiffusion
tends to change the structure of the image significantly, as
shown in Fig. 4. We hypothesize that optimizing the style
in CLIP [4]’s semantically rich feature space forces StyleD-
iffusion to be trained in that manner.

Additional qualitative results. We additionally compare
the proposed method with the most recent baseline (AesPA-
Net) and baseline with the lowest ArtFID (AdaAttN). Fig. 3
shows the additional qualitative comparison of ours with
diffusion model baselines. Moreover, as shown in Fig. 5, 6,
we observe that ours better-transfers the local texture of a
given style into the content image.

Also, in Fig. 7, 8, we visualize the style transfer results
of various pairs of content and style images.



Figure 5. Qualitative comparison with baselines (AesPA-Net, AdaAttN). For visualizing the detailed textures, we provide the cropped
version of the style image and its stylized counterparts in the second row of every content-style pair. Zoom in for viewing details.



Figure 6. Qualitative comparison with baselines (AesPA-Net, AdaAttN). For visualizing the detailed textures, we provide the cropped
version of the style image and its stylized counterparts in the second row of every content-style pair. Zoom in for viewing details.



Figure 7. Style transfer results of style and content image pairs. Zoom in for viewing details.



Figure 8. Style transfer results of style and content image pairs. Zoom in for viewing details.
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