
Supplementary material for
Open-vocabulary object 6D pose estimation

Jaime Corsetti1,2 Davide Boscaini1 Changjae Oh3 Andrea Cavallaro4,5 Fabio Poiesi1

1Fondazione
Bruno Kessler

2University
of Trento

3Queen Mary University
of London

4Idiap Research Institute 5EPFL

{jcorsetti,dboscaini,poiesi}@fbk.eu c.oh@qmul.ac.uk andrea.cavallaro@epfl.ch

1. Introduction

We provide additional material in support of our main paper.
This document is organized as follows:
• In Sec. 2, we compare the assumptions and requirements

of Oryon with those of state-of-the-art methods that ad-
dress pose estimation in a generalizable setting.

• In Sec. 3, we provide additional implementation details
and display the architecture of the fusion module (ϕTV )
in Sec. 3.1 and the decoder (ϕD) in Sec. 3.2.

• In Sec. 4, we outline the process we followed to generate
our training and test datasets.

• In Sec. 5 we extend the discussion on the pose metrics.
• In Sec. 6, we list the textual prompts we used for evalu-

ation on REAL275 [23] and Toyota-Light [7] (TOYL for
short), including the alternative prompts used in the abla-
tion studies. We also present some examples of synonym
sets from ShapeNet6D [26] (SN6D for short).

• In Sec. 7, we show additional qualitative results on pose
estimation (Sec. 7.1) and segmentation (Sec. 7.2) on
TOYL and REAL275. Moreover, we provide examples
of feature distance visualization for FA and FQ, demon-
strating how the features change when different prompts
are used (Sec. 7.3).

2. Setting comparison

In Tab. 1, we present a comparison of the data requirements
of state-of-the-art methods for generalizable pose estima-
tion. For each method, we report the input data, the ref-
erence used to estimate the pose, and whether the method
can estimate the full pose or only the rotation component.
We also summarize the object onboarding process, which
has to be carried out at evaluation time for each novel ob-
ject. Finally, we report the localization prior used, i.e., an
external module that is used to crop or segment the object
of interest. Note that some methods include the localization
module within their pipeline ([13, 20], and ours), instead of
employing an external module.

We identify three main groups in the current literature.
The first is model-based methods, which require a 3D model
of the object at test time [2, 10, 20]. When present, the ob-
ject onboarding phase requires generating a set of templates
(i.e., a set of views of the novel object) from the object 3D
model [2, 20].

The second is model-free methods, which assume a
video sequence of the object to be available [5, 13, 22]. In
these methods, the object onboarding phase is particularly
cumbersome. Gen6D [13] requires the user to perform SfM
to reconstruct the object point cloud, which is then man-
ually cropped and oriented. The resulting point cloud is
used as an object model. OnePose [22] and OnePose++ [5]
also perform SfM on the video sequence, but they only use
it to recover the camera poses, so the manual cropping of
the point cloud is not needed. Therefore, the onboarding
process of model-free methods requires human interven-
tion, as opposed to that of model-based methods. OnePose
and OnePose++ both adopt a prior detector (YOLOv5 [9]),
while in Gen6D the localization is included in the pipeline.

The third group is composed of methods for relative pose
estimation [12, 16, 24, 27]. These methods do not require
any type of object model but instead rely on one or more
support views of the novel object. In particular, NOPE [16]
adopts a single support view, while RelPose [27] can work
with two or more support views. Both methods rely on RGB
data, and no geometric information is present. Because of
this, they only estimate the relative rotation. On the other
hand, PoseDiffusion [24] and RelPose++ [12] assume that
the scenes are object-centric, and enstablish a constraint on
the distance of the first view from the origin of the coor-
dinate system (e.g., the unit distance for RelPose++). This
allows both methods to estimate a relative translation, up
to a global scale transformation of the scene. Due to the
object-centric assumption, both methods rely on an object
detector to crop the object of interest. A different approach
is used in LatentFusion [17], in which a neural renderer is
used to predict the depth and estimate the pose with respect

1



to a set of reference views. LatentFusion works with as
less as a single reference view, and can estimate a complete
pose in an absolute scale as also the depth information is
provided. Note that the original method requires the ground
truth segmentation mask at both train and test time.

Oryon is fundamentally different from model-based
methods as the object 3D model is not required. With re-
spect to model-free methods instead, Oryon does not rely
on complex object onboarding procedures, and it does not
assume that the novel object is physically available so that a
video sequence can be captured. Instead, to test on a novel
object, only a textual description of it is required. Finally,
compared to most relative pose estimation methods, Oryon
is able to estimate the complete pose due to the requirement
of depth information, including the absolute value of the
translation component. Moreover, Oryon does not rely on
an external module for localization, as this step is carried
out within the pipeline in an open-vocabulary fashion.

3. Implementation details
3.1. Text-visual fusion architecture

In Fig. 1, we show the details of a single layer of the fu-
sion module ϕTV . Note that the input visual feature map
E and the prompt features eT have different feature sizes,
as E ∈ R1024×24×24, while eT ∈ R80×768, where 80 is the
number of prompt templates. To compute the cost volume,
we require the same feature dimension; therefore we apply
a 2D convolution to E to obtain a matrix ∈ R768×24×24.
The guidance backbone ϕG is used to output a feature map
G ∈ R512×24×24, which is projected to a feature map ∈
R128×24×24 before concatenating with the keys and queries
of the two attention layers. We also project the prompt fea-
tures eT to a lower-dimensional space to obtain a feature list
∈ R80×128, which is concatenated to the visual feature map
in the text guidance head. The text guidance head is used
to inject prompt information into a lower-resolution feature
map to enhance the semantic content of the features.

Note that the fusion module ϕTV is composed of two
of the layers depicted in Fig. 1. Experimentally, we found
beneficial to use the weights of CATSeg [3] for the window
attention and shifted window attention parts of the module.
In CATSeg, these two modules are followed by a Linear
Transformer layer, which is used to model the relationship
among the different classes in the textual prompt. Instead,
in our setting, the prompt T only describes a single class
(i.e., object); therefore we replace the Linear Transformer
layer with the text guidance head, which is trained from
scratch.

3.2. Decoder architecture

In Fig. 2, we show the details of the decoder ϕD. A single
decoder layer is composed by a transposed 2D convolution

that doubles the spatial resolution of the input feature map.
The result is concatenated with a projection of the feature
map derived from the guidance backbone ϕG. We use G1

for the first layer and G2 for the second, while the third
layer does not use any guidance. After the concatenation,
we apply two blocks of operations, each composed of a 2D
convolution followed by group normalization and ReLU ac-
tivation. For better visualization, this group of operations is
depicted as ConvGroup in Fig. 2.

As for the fusion module ϕTV , for the first two upsam-
pling layers and the guidance projections, we finetune the
weights provided by CATSeg [3]. We find this approach to
be beneficial, as the upsampling layers are already trained
for segmentation and therefore provide a good initialization
to learn fine-grained features necessary for matching. The
third upsampling layer is instead trained from scratch.

3.3. Hardware and implementation

We implement Oryon with PyTorch Lightning [1]. We train
each model on four Nvidia V100 GPUs and set the batch
size to 32. Training a single model for 20 epochs takes
about 12 hours in our standard setting. We test on a single
GPU of the same model; a complete evaluation on a dataset
takes about one hour, including I/O operations and metric
computations.

4. Dataset generation

In this section, we describe the process to generate the scene
pairs for our training and test datasets. Given an object O in
two scenes A and Q, let PA, PQ be the point clouds resulting
from the unprojection of the two depth maps DA, DQ, and
let RGBA, RGBQ be the respective RGB images. The point
clouds PA, PQ are then filtered by using the ground-truth
mask of A and Q of the object O, thus retaining only the
points that belong to the object of interest in the two scenes.
The objective is to find the transformation TA→Q that aligns
PA to PQ. Let TA, TQ be the ground-truth pose of O in A
and Q respectively.

In order to generate the poses required for the training
process, the following strategy is adopted:
1. Sample a random object O, and a random scene A in

which O is present.
2. Consider all the images that contain O that belong to a

different scene from A. Sample a random Q from this
set.

3. Given TA and TQ, compute the relative pose TA→Q =
TQ(TA)

−1.
4. Apply TA→Q to PA, thus aligning it to PQ. Use the

Nearest Neighbor algorithm to compute a set of 3D
matches between PA and PQ. To be considered a match,
the Euclidean distance between two points must be ≤ 2
mm.



Table 1. Comparison of the data requirements of Oryon with examples of state-of-the-art methods for generalizable pose estimation. We
classify the methods based on: Input: the type of input data, typically RGB or RGBD; Reference: additional data used to identify the
novel object at test time; Full pose: whether the method is capable of estimating the 6D pose or is limited to the rotation component;
Object onboarding: eventual process required at test time to acquire data about the object to pose; Localization prior: eventual external
modules used to localize the object, typically a segmentation mask or a detector.

Method Input Reference Full pose Object onboarding Localization prior
OVE6D [2] D 3D model ✓ Generates and encodes 4K object templates Segm. mask
MegaPose [10] RGBD 3D model ✓ - Detector
OSOP [20] RGB 3D model ✓ Generates 90 object templates -
Gen6D [13] RGB Video sequence ✓ SfM and manual cropping of point cloud -
OnePose [22] RGB Video sequence ✓ SfM to retrieve camera viewpoints Detector
OnePose++ [5] RGB Video sequence ✓ SfM to retrieve camera viewpoints Detector
NOPE [16] RGB Single supp. view - -
RelPose [27] RGB Two or more supp. views - -
RelPose++ [12] RGB Two or more supp. views ✓ - Detector
PoseDiffusion [24] RGB Two or more supp. views ✓ - Detector
LatentFusion [17] RGBD One or more supp. views ✓ - Segm. mask
Oryon (ours) RGBD Single supp. view ✓ Expression of textual prompt -

Layer N
orm V

Conv

W
. A

ttention

Conv

K
Q Layer N

orm

AvgPooling

C
onv

C
onv

M
LP

U
psam

pling

Layer N
orm V

SW
. A

ttention

K
Q Layer N

orm

M
LP

M
LP

G

C

ϕG

E

eT

[.] [.]

Window attention Shifted window attention Text guidance head

Figure 1. Architecture detail of a layer of the fusion module ϕTV . W. Attention: attention layer that performs self-attention within win-
dows, as in [14]; SW. Attention: attention layer that performs self-attention among shifted windows, as in [14]; Upsampling: upsampling
by interpolation; ⊕ denotes feature sum; ⊗ denotes cost computation by cosine similarity; [.] denotes feature concatenation.

TransC
onv

C
onvG

roup

C
onvG

roup

ConvConv
TransC

onv

TransC
onv

C
onvG

roup

ϕG
G1 G2

C [.] [.]

1◦ upsampling 2◦ upsampling 3◦ upsampling

F

Figure 2. Architecture detail of the decoder ϕD . TransConv:
transposed 2D convolution; ConvGroup: group composed by two
blocks, each contains a 2D convolution, a group normalization and
a ReLU; [.] denotes feature concatenation.

5. Use the intrinsic camera parameters to project the set of
matches in 2D, thus obtaining the pixel-level correspon-
dences xA, xQ between RGBA and RGBQ.

Note that the relative pose TA→Q is only used for evalua-
tion, as the training objectives are the ground-truth matches
xA, xQ. The above process is repeated until the desired
number of image pairs is obtained (i.e., 2K for REAL275
and TOYL, 20K for SN6D). Additionally, when generating
the training set from SN6D, we reject all scene pairs with
fewer than 100 ground-truth matches.

5. Pose metrics details

We adopt the Average Recall (AR) [8] as main pose met-
ric, which is defined as the average of three different met-
rics (VSD, MSSD, MSPD). Additionally, we report the
ADD(S)-0.1d [6] and its definition. In the following defi-
nitions, let O ∈ RN×3 be the point cloud representing the
object model, and T̂, T ∈ R3×4 be the ground-truth and
predicted 6D pose respectively. Let also d be the diameter
of O.
Visible Surface Discrepancy (VSD) compares two dis-



tance maps, obtained by rendering O respectively with T̂
and T on the original depth of the image. The error eV SD

is thus obtained as the mean of the distance map error, and
the recall θV SD is defined as the mean of a set of recalls, in
which the thresholds varies from 5% to 50% of d. Finally,
VSD is defined as the mean of a set of recalls on θV SD,
in which the threshold varies from 0.05 to 0.5. Due to its
definition, VSD is agnostic to object symmetry.
Maximum Symmetry-Aware Surface Distance (MSSD).
Consider the maximum distance (i.e., between any pair of
points) between O transformed with the ground-truth pose
T̂ and O transformed with the predicted pose T. This error
eMSSD is used to compute a set of recalls, in which the
thresholds vary from 5% to 50% of d. The average of the
recall set is the final metric MSSD. In order to take into
account rotation to symmetry, eMSSD is computed for each
symmetry axis of O, and the smallest error is selected [8].
Maximum Symmetry-Aware Projection Distance
(MSPD) is defined similarly to MSSD. Instead of comput-
ing the error in the 3D space, the transformed point clouds
are projected in 2D before computing the maximum dis-
tance. As for VSD and MSSD, the resulting error eMSPD

is used to compute a set of recalls, whose thresholds vary
from 5% to 50% of w/640, where w is the width of the
image. As in the MSSD, eMSPD is computed with all the
symmetry sets of O, and the smallest distance is used to
compute the recalls.
ADD(S)-0.1d [6] (ADD for short) is quite different from
the metrics defined in the BOP challenge. The error eADD

is defined as the mean distance between O transformed
with the ground-truth pose T̂ and O transformed with the
predicted pose T. Instead of computing a mean of re-
calls, ADD is defined as a single recall of eADD, where
the threshold is defined as 10% of d.

The error measured by ADD is similar to the one of
MSSD, but the first is more effective at measuring the suc-
cess rate at a quite restrictive threshold (i.e., the cases in
which the pose is very accurate). On the other hand, MSSD
is less sensible to noise as it is defined as a set of recalls, and
is less dependent on object model shape as it measure the
maximum distance instead of the mean [6]. MSPD shares
similar characteristics of MSSD, while VSD is effective at
measuring the depth distance, regardless of the object sym-
metry. For this reasons, we adopt Average Recall (AR) as
main metric, and we also report ADD(S)-0.1d due to its
wide use in the pose estimation community [21, 25].

6. Prompt details
In this section, we present the textual prompts used for all
our tests with REAL275 [23] and TOYL [7], along with
some examples of textual metadata from the training set,
SN6D [26]. Note that we omit the prompt template used to
augment the object descriptions. We adopt the template list

used by CLIP [18], which includes 80 templates.

6.1. REAL275 prompts

In Fig. 3, we provide the exhaustive list of prompts used for
each object model in REAL275. For each object, we show
an example crop obtained from our test set and the textual
information used to compose the prompt. We report in black
the object name, in green the description used in our default
setting, and in red the misleading description used in the
ablation study.

6.2. Toyota-Light prompts

In Fig. 4, we present the exhaustive list of prompts used
for each object model in the TOYL. For each object, we
show an example crop obtained from our test set and the
textual information used to compose the prompt. We report
in black the object name and in green the description used in
our default setting. Note how, with respect to REAL275, the
poses of the objects show more variety (e.g., objects tilted
on one side or upside-down), as well as more object types.

6.3. ShapeNet6D synsets

In Fig. 5, we showcase some examples of objects in the
SN6D [26] dataset, along with the object names and the
synsets (i.e., synonym sets) we adopt to build the prompt.
For each object, we show an example crop obtained from
the training set and the list of synonyms obtained from
ShapeNetSem [19]. The first name in the list is the de-
fault one, and the subsequent names (if present) are the syn-
onyms. This dataset is completely synthetic and does not
depict a realistic scenario, as all the objects are rendered in
random poses and on a random background. Nonetheless,
SN6D shows a wide variety of poses and objects, along with
rich textual information useful for constructing the textual
prompts.

7. Additional qualitative results
In Sec. 7.1, we report additional qualitative results on pose
estimation on the test datasets. In Sec. 7.2, we show qual-
itative results of the segmentation mask obtained by Oryon
in our best setting and compare them with the ground-truth
masks and the ones predicted by OVSeg [11].

7.1. Pose results

In Fig. 6, we show qualitative results of the object poses on
REAL275 [23]. Oryon is generally effective at localizing
the object of interest, while the main source of errors in the
pose is related to the rotation components (see Fig. 6(a,c,f)).
In all these cases, the object appears small, and therefore the
retrieved matches are coarse-grained. On the other hand,
ObjectMatch [4] and SIFT [15] show larger errors, often
related to the translation components (Fig. 6(a,b,d) for Ob-
jectMatch, and Fig. 6(e) for SIFT). Note that all methods



bottle
red stanford
blue tall

bottle
white shampoo
black water

glass
tall plastic
green plastic

bowl
white and

blue
purple and

green

bowl
white small

yellow

bowl
white small
big red

camera
black lens

white digital

camera
black lens
red digital

camera
white small
blue lens

can
colorful tall
green small

can
green tall

blue

can
white tall

red

laptop
brown open

green closed

laptop
open black

closed white

laptop
grey open

white closed

mug
white
purple

mug
brown
white

mug
light blue

red

Figure 3. Prompts used in the REAL275 [23] dataset. For each object, we show the object name, the detailed description (i.e., the default
one), and the misleading description we adopt in the ablation study. All the objects are cropped for better visualization.

in this visualization use our segmentation mask; therefore,
translation errors are due to spurious matches rather than an
incorrect mask.

In Fig. 7, we show qualitative results of the object poses
on TOYL [7]. As in REAL275, Oryon localization on
TOYL is quite accurate. Rotation errors are still present
and are related to small objects (see Fig. 7(a, d, f)), which
in TOYL are more common due to higher variation in poses
compared to REAL275. We observe that ObjectMatch’s ef-
fectiveness in this dataset is limited: in some cases, large
errors cause the projected object to fall outside the image
plane (Fig. 7(a, b)), while in other cases, significant trans-
lation errors are present (Fig. 7(d, e, f)). As observed in
the main results, the high variation in light conditions of
TOYL is not tolerated by ObjectMatch, which fails to find
accurate matches. On the other hand, SIFT performances
are closer to ours. Localization is more effective than Ob-

jectMatch (Fig. 7(a, b, c, d, f)), but rotation errors are still
present (Fig. 7(a, b, f)). The scale invariance properties of
SIFT make it more effective for this scenario.

7.2. Segmentation results

In Fig. 8, we show some qualitative results of the segmenta-
tion masks on REAL275 [23]. On this dataset, Oryon out-
performs OVSeg [11] by 10.1 points in mean Intersection-
over-Union (mIoU). In Fig. 8, we can observe that the
masks predicted by Oryon are generally coarser than the
ones predicted by OVSeg. This is caused by the lower res-
olution we adopt for the segmentation mask (192×192),
while OVSeg generates the masks using the original im-
age resolution (480×640). There are cases in which this
results in a clearly better performance for OVSeg (Fig. 8(a,
d)). However, compared to Oryon, false positives are much
more frequent in OVSeg: the object is completely missed in



remote
white and

blue

magazine
green
sudoku

mug
red and
white
small

mug
colorful
small

mug
large
green

mug
large
yellow

mug
black and
white

plastic
bottle
green

croc
light
green

cup
blue and
white

cup
brown and

red

plate
red and
white
small

plate
white
striped
small

cracker
box

blue and
yellow

milk
carton

white and
blue

plastic
container

white

can
green and

white

can
orange

basket
yellow

mug
black and
white

mug
black and

white

Figure 4. Prompts used in the TOYL [7] dataset. For each object, we show the object name and the detailed description (i.e., the default
one). All the objects are cropped for better visualization.

Fig. 8(c, e, f), while in Fig. 8(b) the whole table is selected
in the anchor scene, and the wrong object is segmented in
the query one.

On the other hand, Oryon is less prone to false nega-
tives: most errors are instead due to the inclusion of back-
ground in the mask (Fig. 8(b)) or segmenting only a part of
the object (Fig. 8(d)). Both these errors can still provide a
sufficient number of valid matches to perform registration,
while a false positive results in an automatic failure in the
pose estimation task. Note the particular case of Fig. 8(f),
in which two mugs are present in the anchor image. This
causes an ambiguity, and results in a separate mask for each
mug. Similarly, in the query image of Fig. 8(c), the wrong
mug is segmented.

In Fig. 9, we show some qualitative results of the seg-
mentation masks on TOYL [7]. On this dataset, Oryon is
outperformed by OVSeg [11] by 7.4 mIoU. Compared to
REAL275, TOYL does not show additional objects other
than the object of interest; therefore it is an easier dataset

for the segmentation task. We observe that both Oryon and
OVSeg can correctly locate the objects of interest, and all
the errors in the examples are due to imprecision in the seg-
mentation mask, instead of false positives or false negatives.
Similarly to REAL275, OVSeg masks are generally more
accurate than the ones predicted by Oryon. The higher res-
olution of OVSeg is an important advantage in this dataset,
as the object can appear very small due to perspective (see
Fig. 9(a, b, c)). Most of the errors in Oryon are due to partial
object segmentation (Fig. 9(b, d, f)) and background inclu-
sion in the mask (see Fig. 9(a, e)).

7.3. Feature visualization

In Fig. 10, we present some examples of the visualization
of the feature distance in the feature maps FA, FQ obtained
by Oryon. For each image pair, we first sample a random
reference point from the ground-truth segmentation mask
on the anchor image (shown in green). We then compute
the cosine similarity between the feature at the reference



telephone
booth;
phone booth;
call box;
telephone box

ashcan;
trash can;
garbage can;
dust bin

bag;
handbag;
pocketbook;
purse

recliner;
reclining
chair;
lounger

blender;
liquidizer;
liquidiser

french fries;
french-fried
potatoes;
fries;
chips

plant;
flora;
plant life

battery;
electric
battery

rifle skateboard table alarm clock;
alarm

Figure 5. Sample objects from the SN6D [26] dataset. For each object, we show the object default name, followed by its synonyms. Note
that not all objects have an associated synonym set (e.g., the rifle, skateboard, and table objects). All the objects are cropped for better
visualization, and padding is added when necessary.

point and all the other features, both on the anchor and on
the query image. In this way, we obtain a distance mea-
sure for each pixel, which is normalized across the pair and
mapped to the RGB space. For each example, we show
three versions of the feature maps obtained with the prompts
we adopted in the ablation study in the main paper (i.e., the
standard prompt, the prompt with only the object name, and
the prompt with a misleading description).

When the standard prompt is adopted (first row), we
can observe a sharp difference between the features of the
background and the ones on the objects. Note also how
in Fig. 10(a), the most similar points to the reference one
on the query image are on the bowl border, as the ref-
erence point itself. When the object description is re-
moved (second row), we can observe noticeable changes
in Fig. 10(a), in which the background appears more noisy,
and in Fig. 10(c), where a set of similar features appears on
top of the camera in the query image. Instead, in Fig. 10(b),
the difference with the distances of the original prompt is
less relevant. As we reported in the ablation study, this al-
ternative prompt causes a small drop of 2.2 in AR and of 3.1
in mIoU. Finally, in the last row, a misleading description
is used in the prompt. This causes a clear drop in feature
quality in Fig. 10(a, c): in the first example, the object out-
line is still visible due to similarity in the borders of the
bowl, and in the second example only spurious similar fea-

tures are present. Instead, the laptop object in Fig. 10(b) is
less affected. Note that in the ablation study, the mislead-
ing prompt causes a drop of 6.8 and 10.1 in AR and mIoU,
respectively. These results suggest that the use of a mislead-
ing or more generic prompt can impact Oryon performances
differently depending on the object of interest.

References
[1] Pytorch lightning documentation.

https://lightning.ai/docs/pytorch/stable/. Last access:
21/11/2023. 2

[2] D. Cai, J. Heikkila, and E. Rahtu. OVE6D: Object Viewpoint
Encoding for Depth-based 6D Object Pose Estimation. In
CVPR, 2022. 1, 3

[3] S. Cho, H. Shin, S. Hong, S. An, S. Lee, A. Arnab, P. H. Seo,
and S. Kim. Cat-seg: Cost aggregation for open-vocabulary
semantic segmentation. In arXiv:2303.11797, 2023. 2

[4] C. Gümeli, A. Dai, and M. Nießner. ObjectMatch: Robust
Registration using Canonical Object Correspondences. In
CVPR, 2023. 4, 8, 9

[5] X. He, J. Sun, Y. Wang, D. Huang, H. Bao, and X. Zhou.
OnePose++: Keypoint-Free One-Shot Object Pose Estima-
tion without CAD Models. In NeurIPS, 2022. 1, 3

[6] T. Hodan, J. Matas, and S. Obdrzalek. On evaluation of 6D
object pose estimation. In ECCV, 2016. 3, 4

[7] T. Hodan, F. Michel, E. Brachmann, W. Kehl, A. GlentBuch,
D. Kraft, B. Drost, J. Vidal, S. Ihrke, X. Zabulis, et al. Bop:



Anchor Ground truth ObjectMatch [4] SIFT [15] Ours

(a) Prompt: White and blue bowl

(b) Prompt: Brown open laptop

(c) Prompt: Black lens camera

(d) Prompt: White tall can

(e) Prompt: Light blue mug

(f) Prompt: Red Stanford bottle

Figure 6. Examples of qualitative pose results from the REAL275 [23] dataset. All the results use the segmentation mask predicted by
Oryon. We show the object model colored by mapping its 3D coordinates to the RGB space. Query images are darkened to highlight the
object poses.

Benchmark for 6D object pose estimation. In ECCV, 2018.
1, 4, 5, 6, 9, 11

[8] T. Hodan, M. Sundermeyer, B. Drost, Y. Labbe, E. Brach-
mann, F. Michel, C. Rother, and J. Matas. BOP challenge

2020 on 6D object localization. In ECCV, 2020. 3, 4

[9] Glenn Jocher. Yolov5 by ultralytics, 2020. 1

[10] Y. Labbé, L. Manuelli, A. Mousavian, S. Tyree, S. Birchfield,
J. Tremblay, J. Carpentier, M. Aubry, D. Fox, and J. Sivic.



Anchor Ground truth ObjectMatch [4] SIFT [15] Ours

(a) Prompt: White and blue remote

(b) Prompt: Red and white small plate

(c) Prompt: Blue and yellow cracker box

(d) Prompt: Orange can

(e) Prompt: Green sudoku magazine

(f) Prompt: Red and white small mug

Figure 7. Examples of qualitative pose results from the TOYL [7] dataset. All the results use the segmentation mask predicted by Oryon.
We show the object model colored by mapping its 3D coordinates to the RGB space. Query images are darkened to highlight the object
poses.

Megapose: 6D pose estimation of novel objects via render &
compare. In CoRL, 2022. 1, 3

[11] F. Liang, B. Wu, X. Dai, K. Li, Y. Zhao, H. Zhang, P. Zhang,
P. Vajda, and D. Marculescu. Open-vocabulary semantic seg-

mentation with mask-adapted clip. In CVPR, 2023. 4, 5, 6,
10, 11

[12] A. Lin, J. Y. Zhang, D. Ramanan, and S. Tulsiani. Rel-
pose++: Recovering 6d poses from sparse-view observa-



Anchor Query Anchor Query Anchor Query

G
ro

un
d

tr
ut

h
O

V
Se

g
[1

1]
O

ry
on

(a) Prompt: Gray open laptop (b) Prompt: White small
camera

(c) Prompt: Brown mug

G
ro

un
d

tr
ut

h
O

V
Se

g
[1

1]
O

ry
on

(d) Prompt: Black lens camera (e) Prompt: Tall green can (f) Prompt: White mug

Figure 8. Examples of qualitative segmentation results from the REAL275 [23] dataset. Images are darkened to highlight the masks.

tions. In arXiv:2305.04926, 2023. 1, 3

[13] Y. Liu, Y. Wen, S. Peng, C. Lin, X. Long, T. Komura, and W.
Wang. Gen6d: Generalizable model-free 6-DoF object pose
estimation from rgb images. In ECCV, 2022. 1, 3

[14] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo. Swin transformer: Hierarchical vision transformer
using shifted windows. In ICCV, 2021. 3

[15] D. Lowe. Object recognition from local scale-invariant fea-
tures. In ICCV, 1999. 4, 8, 9

[16] V. Nguyen, T. Groueix, Y. Hu, M. Salzmann, and V. Lepetit.
Nope: Novel object pose estimation from a single image. In
arXiv:2303.13612, 2023. 1, 3

[17] K. Park, A. Mousavian, Y. Xiang, and D. Fox. Latentfu-
sion: End-to-end differentiable reconstruction and rendering



Anchor Query Anchor Query Anchor Query

G
ro

un
d

tr
ut

h
O

V
Se

g
[1

1]
O

ry
on

(a) Prompt: White and blue
remote

(b) Prompt: Red and white
small mug

(c) Prompt: Large green mug

G
ro

un
d

tr
ut

h
O

V
Se

g
[1

1]
O

ry
on

(d) Prompt: Black and white
mug

(e) Prompt: Green plastic
bottle

(f) Prompt: White and blue
milk cartoon

Figure 9. Examples of qualitative segmentation results from the TOYL [7] dataset. Images are darkened to highlight the masks.

for unseen object pose estimation. In CVPR, 2020. 1, 3

[18] A. Radford, J. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agar-
wal, G. Sastry, A. Askell, P. Mishkin, J. Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In ICML, 2021. 4

[19] M. Savva, A. Chang, and Hanrahan P. Semantically-
Enriched 3D Models for Common-sense Knowledge. In
CVPR, 2015. 4

[20] I. Shugurov, F. Li, B. Busam, and S. Ilic. OSOP: a multi-
stage one shot object pose estimation framework. In CVPR,



Anchor Query Anchor Query Anchor Query

•

• •

St
an

da
rd

pr
om

pt

•

• •

N
am

e
on

ly

•

• •

M
is

le
ad

in
g

de
sc

.

•

• •

(a) Prompt: White small bowl (b) Prompt: Open brown laptop (c) Prompt: Black lens camera

Figure 10. Visualization of the feature distance in FA, FQ with respect to a reference point on the object (denoted as • in the anchor image)
on REAL275 [23]. For each sample, we test three different prompts we adopted in the ablation study: Standard prompt: the standard
prompt we adopt, composed of a description and the object name; Name only: the standard prompt without the description; Misleading
desc.: the standard description is replaced by a misleading one (see Fig. 3). The RGB images are modified to highlight the object of
interest.

2022. 1, 3
[21] Y. Su, M. Saleh, T. Fetzer, J. Rambach, N. Navab, B. Busam,

D. Stricker, and F. Tombari. ZebraPose: Coarse to Fine Sur-
face Encoding for 6DoF Object Pose Estimation. In CVPR,
2022. 4

[22] J. Sun, Z. Wang, S. Zhang, X. He, H. Zhao, G. Zhang, and
X. Zhou. Onepose: One-shot object pose estimation without
cad models. In CVPR, 2022. 1, 3

[23] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J.
Guibas. Normalized object coordinate space for category-
level 6D object pose and size estimation. In CVPR, 2019. 1,
4, 5, 8, 10, 12

[24] J. Wang, C. Rupprecht, and D. Novotny. Posediffusion:
Solving pose estimation via diffusion-aided bundle adjust-
ment. In ICCV, 2023. 1, 3

[25] C. Wu, L. Chen, S. Wang, H. Yang, and J. Jiang. Geometric-
aware Dense Matching Network for 6D Pose Estimation of
Objects from RGB-D Images. In Pattern Recognition, 2023.
4

[26] H. Yisheng, W. Yao, F. Haoqiang, C. Qifeng, and S. Jian.
Fs6d: Few-shot 6D pose estimation of novel objects. In
CVPR, 2022. 1, 4, 7

[27] J. Zhang, D. Ramanan, and S. Tulsiani. Relpose: Predicting
probabilistic relative rotation for single objects in the wild.
In ECCV, 2022. 1, 3


