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Overview
This supplementary material includes additional experimental results. In particular, we report:
• A more detailed analysis on the dynamic of the PRO (Per-Region Overlap) curve, alongside comparisons dealing with

different integration thresholds;
• An ablation study concerning the architecture of the Feature Mapping networks, i.e. the core components in our method;
• An ablation study regarding the backbone employed as 2D Feature Extractor;
• Additional quantitative and qualitative results dealing with both MVTec 3D-AD and Eyecandies.

A. Analysis of the PRO curve
The chart in Fig. 1 reports the Per-Region Overlap curve provided by our method on class Foam of the MVTec 3D-AD
dataset. The chart shows how most of the dynamic of the curve is concentrated way underneath the 0.3 integration threshold
used to define the popular AUPRO@30% metric. This is also highlighted in Fig. 2, which compares the different Multimodal
AD methods focusing on lower FPRs.

Figure 1. PRO curve - Whole FPR Range. Per-Region Over-
lap curve obtained by our method on class Foam of MVTec
3D-AD. The dotted line shows the AUPRO@30% threshold.

Figure 2. PRO curve - Lower FPRs. Per-Region Overlap
curve obtained by all Multmodal AD methods on class Foam
of MVTec 3D-AD. Focus on the [0-0.3] FPR range.

Thus, as discussed in the main paper, on one hand choosing FPR=0.3 as integration threshold may not match the require-
ments of a number of industrial applications, on the other, it tends to wash out the performance differences between the
methods, which, indeed, behave much more differently at lower, i.e., more challenging FPRs. Hence, we deem it worth con-
sidering also more demanding variants of the AUPRO metric, such as, in particular, those obtained with integration thresholds
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Figure 3. Performance, speed and memory occupancy of Multimodal Anomaly Detection methods. The chart reports anomaly
segmentation performance on MVTec 3D-AD according to different AUPRO variants (from left to right: AUPRO@10%, AUPRO@5%,
AUPRO@1% ) vs. inference speed (Frame Rate on an NVIDIA 4090 GPU). The size of the symbols is proportional to memory occupancy
at inference time.

0.1, 0.05, and 0.01, referred to as AUPRO@10%, AUPRO@5% and AUPRO@1%, respectively. As illustrated in Fig. 3, our
proposal consistently provides better performance (i.e., higher AUPRO) than previous Multimodal AD methods across all
the considered variants of the AUPRO metric while running much faster and requiring way less memory. In particular, the
performance gap is higher for the more challenging variants of the AUPRO.

B. Feature Mapping Networks
We investigate the use of alternative network architectures to implement the Feature Mapping functions, namely: (i) MLP
Encoder-Decoder, (ii) MLP Projection, i.e. the architecture described in the main paper, and (iii) Convolutional Encoder-
Decoder.

The MLP Encoder-Decoder architecture comprises an encoding stage and a decoding stage, each consisting of two layers,
along with an extra bottleneck layer between these two stages. The input layer in the encoding stage has a number of neurons
equal to the dimensionality of the input feature space, while the last layer in the decoding stage has a number of neurons
equal to the dimensionality of the output feature space. Between each pair of successive layers, but for the bottleneck layer,
the number of neurons is either halved (in the encoding stage) or doubled (in the decoding stage). Accordingly, in our setup,
we have [768, 384, 192, 192, 384, 1152] neurons in each layer for M2D→3D, and [1152, 576, 288, 288, 576, 768] neurons in
each layer for M3D→2D. In both networks, all but the last layer employ GeLU activations.

As to MLP Projection architecture, we refer to shallow MLPs consisting of three layers, with GeLU activations but in the
last one. The input layer has a number of neurons equal to the dimensionality of the input feature space, while the last layer
has a number of neurons equal to the dimensionality of the output feature space. The intermediate layer has a number of

Metric Bagel Cable Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
MLP Encoder-Decoder

I-AUROC 0.993 0.858 0.992 0.988 0.985 0.911 0.959 0.866 0.986 0.864 0.940
AUPRO@30% 0.979 0.959 0.982 0.940 0.946 0.960 0.980 0.982 0.972 0.981 0.968
AUPRO@10% 0.938 0.882 0.946 0.890 0.843 0.883 0.941 0.946 0.918 0.942 0.913
AUPRO@5% 0.879 0.791 0.893 0.830 0.749 0.797 0.883 0.892 0.853 0.884 0.845
AUPRO@1% 0.467 0.385 0.487 0.455 0.385 0.395 0.466 0.480 0.451 0.466 0.444

Frame Rate (fps) 25.769
Memory (MB) 369.856

MLP Projection (main paper)
I-AUROC 0.990 0.894 0.986 0.989 0.980 0.916 0.951 0.916 0.986 0.886 0.949

AUPRO@30% 0.979 0.963 0.982 0.940 0.944 0.961 0.980 0.983 0.972 0.980 0.968
AUPRO@10% 0.937 0.892 0.947 0.890 0.838 0.885 0.940 0.948 0.918 0.941 0.914
AUPRO@5% 0.878 0.806 0.894 0.830 0.742 0.799 0.882 0.897 0.853 0.882 0.846
AUPRO@1% 0.469 0.402 0.486 0.450 0.380 0.397 0.463 0.490 0.453 0.463 0.445

Frame Rate (fps) 21.755
Memory (MB) 437.911

Convolutional Encoder-Decoder
I-AUROC 0.997 0.866 0.990 0.993 0.989 0.927 0.979 0.897 0.990 0.918 0.955

AUPRO@30% 0.979 0.965 0.982 0.941 0.948 0.969 0.982 0.983 0.977 0.981 0.971
AUPRO@10% 0.938 0.897 0.947 0.893 0.847 0.906 0.945 0.948 0.931 0.944 0.920
AUPRO@5% 0.880 0.813 0.894 0.834 0.756 0.820 0.891 0.896 0.872 0.889 0.855
AUPRO@1% 0.469 0.409 0.488 0.453 0.393 0.409 0.477 0.488 0.467 0.473 0.453

Frame Rate (fps) 9.906
Memory (MB) 2780.690

Table 1. Results on MVTec 3D-AD, Models trained for 50 epochs. Best results in bold, runner-ups underlined.



neurons equal to the mean between the dimensionality of the input and output features. Thus, as also reported in the main
paper, in our setup the three layers in M2D→3D have 768, 960 and 1152 neurons each, while the three layers of M3D→2D

have 1152, 960 and 768 neurons each.
Finally, unlike the previous two architectures which ingest individual feature vectors, the Convolutional Encoder-Decoder

receives input tensors of spatial size H × W (with D2D and D3D channels for M2D→3D and M3D→2D, respectively).
The architecture follows a UNet-like structure without skip-connections, with two 3x3 convolutional layers followed by 2x2
max-pooling in the encoder stage and one 3x3 conv followed by a 2x2 transpose convolution in the decoding stage. All layers
except the last one employ ReLU activations. The number of channels is kept equal to the input one up to the last layer, where
it is modified so as to match the dimensionality of output feature space (i.e. from D2D and D3D for M2D→3D and from D3D

and D2D for M3D→2D.
For this new set of experiments, we follow the same training protocol as defined in the main paper. The results on MVTec

3D-AD are reported in Tab. 1, and show that the Convolutional Encoder-Decoder architecture provides slightly superior
performance. However, despite its enhanced performance, it operates at a significantly slower inference rate, namely 9.906
fps, in contrast to the 21.755 fps achieved by our base model which is based on the MLP Projection architecture. Furthermore,
the Convolutional Architecture requires six times more memory compared to our base model, e.g., 2780.690 MB compared
to 437.911 MB. Thus, we are led to prefer the performance vs efficiency (both speed and memory) trade-off provided by the
MLP Projection architecture.

C. Feature Extractors
The ever-increasing availability of frozen Transformer-based RGB feature extractors trained on large data corpora has moti-
vated us to explore alternatives to DINO ViT-B/8, such as, in particular, the ViT-B/16 used in SAM [4], the ViT-B/16 used
in CLIP [6], and the ViT-B/14 used in DINO-v2 [5]. Results obtained on MVTec 3D-AD with the different 2D Feature
Extractors are reported in Tab. 3. Interestingly, DINO and DINO-v2 exhibit much better performance than other feature ex-
tractors, which hints at - and may foster further investigation on - the benefits of foundation models trained via self-supervised
contrastive learning in industrial AD.

D. Additional Quantitative Results
In this section, we report the class-wise anomaly detection and segmentation results for some of the experiments discussed
in the main paper, considering also the additional FPR thresholds to compute the AUPRO introduced in Sec. A.

Metric Bagel Cable Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
Ψ2D

I-AUROC 0.937 0.864 0.984 0.951 0.984 0.789 0.915 0.736 0.968 0.825 0.895
AUPRO@30% 0.960 0.966 0.979 0.884 0.911 0.916 0.981 0.974 0.958 0.971 0.950
AUPRO@10% 0.896 0.906 0.937 0.813 0.741 0.783 0.942 0.922 0.878 0.913 0.873
AUPRO@5% 0.819 0.834 0.874 0.738 0.624 0.675 0.884 0.844 0.789 0.841 0.792
AUPRO@1% 0.410 0.427 0.456 0.371 0.311 0.326 0.468 0.410 0.401 0.429 0.401

Ψ3D

I-AUROC 0.948 0.770 0.968 0.981 0.937 0.893 0.694 0.909 0.939 0.812 0.885
AUPRO@30% 0.967 0.922 0.981 0.926 0.919 0.965 0.965 0.981 0.963 0.976 0.956
AUPRO@10% 0.903 0.782 0.943 0.871 0.764 0.899 0.894 0.943 0.892 0.928 0.882
AUPRO@5% 0.817 0.664 0.887 0.806 0.661 0.812 0.793 0.887 0.818 0.858 0.800
AUPRO@1% 0.402 0.302 0.474 0.443 0.341 0.389 0.338 0.474 0.431 0.437 0.403

Ψ2D +Ψ3D

I-AUROC 0.980 0.893 0.991 0.996 0.980 0.844 0.970 0.876 0.966 0.894 0.939
AUPRO@30% 0.969 0.968 0.980 0.904 0.914 0.958 0.982 0.977 0.961 0.977 0.959
AUPRO@10% 0.917 0.912 0.941 0.853 0.749 0.877 0.945 0.932 0.886 0.931 0.894
AUPRO@5% 0.852 0.844 0.882 0.799 0.638 0.784 0.890 0.864 0.806 0.869 0.823
AUPRO@1% 0.448 0.439 0.468 0.462 0.323 0.384 0.478 0.439 0.424 0.456 0.432

max(Ψ2D,Ψ3D)
I-AUROC 0.937 0.865 0.984 0.951 0.983 0.789 0.915 0.736 0.968 0.825 0.895

AUPRO@30% 0.960 0.966 0.979 0.884 0.911 0.916 0.981 0.974 0.958 0.971 0.950
AUPRO@10% 0.896 0.906 0.937 0.813 0.741 0.783 0.942 0.922 0.878 0.913 0.873
AUPRO@5% 0.819 0.834 0.874 0.738 0.624 0.675 0.884 0.844 0.789 0.841 0.792
AUPRO@1% 0.410 0.428 0.456 0.371 0.311 0.326 0.468 0.410 0.401 0.429 0.401

Ψ2D ·Ψ3D

I-AUROC 0.994 0.888 0.984 0.993 0.980 0.888 0.941 0.943 0.980 0.953 0.954
AUPRO@30% 0.979 0.972 0.982 0.945 0.950 0.968 0.980 0.982 0.975 0.981 0.971
AUPRO@10% 0.937 0.917 0.947 0.897 0.855 0.906 0.942 0.947 0.926 0.944 0.922
AUPRO@5% 0.877 0.843 0.894 0.840 0.765 0.828 0.884 0.894 0.865 0.889 0.858
AUPRO@1% 0.459 0.431 0.485 0.469 0.394 0.413 0.468 0.487 0.464 0.476 0.455

Table 2. Aggregation analysis. Best results in bold, runner-ups underlined.



F2D I-AUROC P-AUROC AUPRO@30% AUPRO@1%
DINO [2] 0.949 0.992 0.968 0.445
SAM [4] 0.792 0.973 0.906 0.311
CLIP [6] 0.833 0.984 0.942 0.346

DINO-v2 [5] 0.958 0.992 0.964 0.437

Table 3. 2D Feature Extractor Alternatives. Results on MVTec 3D-AD. Best results in bold. Networks are trained for 50 epochs.

Metric Bagel Cable Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
Ours

I-AUROC 0.994 0.888 0.984 0.993 0.980 0.888 0.941 0.943 0.980 0.953 0.954
AUPRO@30% 0.979 0.972 0.982 0.945 0.950 0.968 0.980 0.982 0.975 0.981 0.971
AUPRO@10% 0.937 0.917 0.947 0.897 0.855 0.906 0.942 0.947 0.926 0.944 0.922
AUPRO@5% 0.877 0.843 0.894 0.840 0.765 0.828 0.884 0.894 0.865 0.889 0.858
AUPRO@1% 0.459 0.431 0.485 0.469 0.394 0.413 0.468 0.487 0.464 0.476 0.455

Ours-M
I-AUROC 0.988 0.875 0.984 0.992 0.997 0.924 0.964 0.949 0.979 0.950 0.960

AUPRO@30% 0.980 0.966 0.982 0.947 0.959 0.967 0.982 0.983 0.976 0.982 0.972
AUPRO@10% 0.941 0.901 0.947 0.899 0.880 0.901 0.945 0.949 0.930 0.947 0.924
AUPRO@5% 0.884 0.817 0.895 0.842 0.798 0.823 0.890 0.898 0.872 0.893 0.861
AUPRO@1% 0.480 0.398 0.490 0.467 0.413 0.408 0.481 0.494 0.468 0.488 0.459

Ours-S
I-AUROC 0.983 0.878 0.973 0.992 0.987 0.913 0.900 0.936 0.981 0.941 0.948

AUPRO@30% 0.978 0.960 0.982 0.948 0.960 0.972 0.977 0.983 0.976 0.981 0.972
AUPRO@10% 0.936 0.882 0.947 0.900 0.884 0.918 0.932 0.949 0.929 0.943 0.922
AUPRO@5% 0.874 0.782 0.894 0.843 0.800 0.845 0.864 0.898 0.870 0.886 0.856
AUPRO@1% 0.461 0.379 0.492 0.479 0.411 0.429 0.430 0.494 0.467 0.472 0.451

Ours-T
I-AUROC 0.948 0.784 0.946 0.985 0.946 0.855 0.815 0.932 0.989 0.794 0.899

AUPRO@30% 0.977 0.903 0.981 0.950 0.945 0.956 0.973 0.983 0.973 0.973 0.961
AUPRO@10% 0.932 0.736 0.944 0.901 0.838 0.873 0.919 0.949 0.920 0.918 0.893
AUPRO@5% 0.867 0.612 0.889 0.844 0.729 0.773 0.839 0.897 0.856 0.838 0.814
AUPRO@1% 0.449 0.267 0.487 0.487 0.364 0.369 0.395 0.491 0.462 0.421 0.419

Table 4. Layers Pruning analysis. Best results in bold, runner-ups underlined.

Method Bagel Cable Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
BTF [3] 0.996 0.992 0.997 0.994 0.981 0.974 0.996 0.998 0.994 0.995 0.992
AST [7] - - - - - - - - - - 0.976

M3DM [8] 0.995 0.993 0.997 0.985 0.985 0.984 0.996 0.994 0.997 0.996 0.992
Ours 0.997 0.992 0.999 0.972 0.987 0.993 0.998 0.999 0.998 0.998 0.993

Table 5. P-AUROC on MVTec 3D-AD dataset in comparison with state-of-the-art models.

In particular, Tab. 2 provides a detailed view of the results for the Aggregation function introduced in Sec. 3.3 of the main
paper. As already highlighted in the evaluation summarized in Tab. 6 and discussed in Sec. 5 of the main paper, the product
aggregation achieves the best results across most of the classes except for one class, i.e., Peach, which shows higher results
using the sum aggregation. These results further support our choice of relying on the product function, which realizes a
logical AND between the discrepancies found in the individual modalities, as preferred aggregation approach.

In addition, Tab. 4 reports the detailed results for the Layers Pruning technique. As described in Sec. 3.4 of the main paper,
to obtain lighter versions of our framework, we prune both feature extractors after the 1st, 4th, and 8th layer to obtain Tiny,
Small, and Medium architectures, referred to as Ours-T, Ours-S and Ours-M. Thus, Tab. 4 extends the evaluation summarized
in Tab. 5 and discussed in Sec. 5 of the main paper. It is worth noticing how Ours-M achieves the best results in both detection
and segmentation. We also highlight that Ours obtains the second-best results in all average metrics.

For the sake of completeness, we also report in Tab. 5 the P-AUROC results on the MVTec 3D-AD dataset. As already
anticipated in Sec. 5 of the main paper, this metric is mostly saturated since every method reaches the same very high results
for each class.

As regards the Eyecandies dataset, we provide a detailed view of the results for each class in Tab. 6, also considering
different FPR thresholds. It is worth highlighting that the original results provided by M3DM [8] were obtained by training
on a subset of the train set of Eyecandies, mostly due to the limitations caused by the memory bank resource requirements.
To achieve more comparable results, we retrained M3DM [8] on the full training set and reevaluated the benchmark, denoted
as M3DM* in Tab. 6.

Generally, we note that features from deeper layers deliver higher contextualizations, thus enabling our cross-modal
mapping to perform anomaly detection better, for the reasons highlighted in Sec. 3 of the main paper. However, some
literature findings suggest that, in self-supervised learning, features from slightly shallower layers may turn out more task



agnostic, i.e. exhibit a better ability to generalize to a wider range of downstream tasks. Thus, we argue that the above
considerations may explain the slightly different performance between Ours and Ours-M in the considered datasets. Overall,
we suggest the simplest and most general approach of keeping the whole Transformer-based feature extractors (i.e. Ours) as
the default choice in our framework.

Method Can. C. Cho. C. Cho. P. Conf. Gum. B. Haz. T. Lic. S. Lollip. Marsh. Pep. C. Mean

I-AUROC

RGB-D [1] 0.529 0.861 0.739 0.752 0.594 0.498 0.679 0.651 0.838 0.750 0.689
RGB-cD-n [1] 0.596 0.843 0.819 0.846 0.833 0.550 0.750 0.846 0.940 0.848 0.787

M3DM [8] 0.624 0.958 0.958 1.000 0.886 0.758 0.949 0.836 1.000 1.000 0.897
M3DM* [8] 0.597 0.954 0.931 0.990 0.883 0.666 0.923 0.888 0.995 1.000 0.882

AST [7] 0.574 0.747 0.747 0.889 0.596 0.617 0.816 0.841 0.987 0.987 0.780
Ours 0.680 0.931 0.952 0.880 0.865 0.782 0.917 0.840 0.998 0.962 0.881

Ours-M 0.645 0.936 0.914 0.901 0.845 0.747 0.877 0.904 0.992 0.885 0.865

P-AUROC

RGB-D [1] 0.973 0.927 0.958 0.945 0.929 0.806 0.827 0.977 0.931 0.928 0.920
RGB-cD-n [1] 0.980 0.979 0.982 0.978 0.951 0.853 0.971 0.978 0.985 0.967 0.962

M3DM [8] 0.974 0.987 0.962 0.998 0.966 0.941 0.973 0.984 0.996 0.985 0.977
M3DM* [8] 0.968 0.986 0.964 0.998 0.976 0.928 0.976 0.988 0.996 0.995 0.977

AST [7] 0.763 0.960 0.911 0.969 0.788 0.837 0.918 0.924 0.983 0.968 0.902
Ours 0.983 0.982 0.964 0.989 0.949 0.946 0.969 0.980 0.995 0.987 0.974

Ours-M 0.985 0.984 0.961 0.986 0.958 0.937 0.968 0.981 0.994 0.978 0.973

AUPRO@30%

M3DM [8] 0.906 0.923 0.803 0.983 0.855 0.688 0.880 0.906 0.966 0.955 0.882
M3DM* [8] 0.889 0.921 0.808 0.982 0.889 0.675 0.872 0.901 0.964 0.973 0.887

AST [7] 0.514 0.835 0.714 0.905 0.587 0.590 0.736 0.769 0.918 0.878 0.744
Ours 0.942 0.902 0.831 0.965 0.875 0.762 0.791 0.913 0.939 0.949 0.887

Ours-M 0.943 0.892 0.795 0.962 0.871 0.779 0.767 0.909 0.944 0.935 0.880

AUPRO@10%
M3DM* [8] 0.677 0.836 0.698 0.947 0.754 0.410 0.732 0.712 0.913 0.924 0.760

AST [7] 0.285 0.709 0.545 0.770 0.404 0.350 0.584 0.544 0.770 0.744 0.570
Ours 0.827 0.815 0.731 0.896 0.741 0.550 0.663 0.739 0.893 0.868 0.772

Ours-M 0.829 0.814 0.683 0.886 0.742 0.564 0.666 0.728 0.898 0.830 0.764

AUPRO@5%
M3DM* [8] 0.479 0.759 0.626 0.894 0.655 0.300 0.634 0.562 0.849 0.861 0.661

AST [7] 0.173 0.592 0.421 0.635 0.288 0.242 0.461 0.378 0.634 0.617 0.444
Ours 0.662 0.750 0.653 0.801 0.657 0.427 0.609 0.552 0.838 0.796 0.675

Ours-M 0.661 0.747 0.611 0.792 0.665 0.446 0.619 0.518 0.840 0.751 0.665

AUPRO@1%
M3DM* [8] 0.166 0.388 0.329 0.486 0.315 0.131 0.323 0.258 0.462 0.454 0.331

AST [7] 0.035 0.230 0.129 0.234 0.092 0.069 0.139 0.090 0.255 0.224 0.149
Ours 0.229 0.397 0.345 0.389 0.353 0.188 0.333 0.236 0.455 0.428 0.335

Ours-M 0.223 0.389 0.333 0.395 0.348 0.206 0.342 0.225 0.452 0.385 0.330

Table 6. Various metrics on the Eyecandies dataset for several multimodal AD methods. Best results in bold, runner-ups underlined.

E. Additional Qualitative Results
In Fig. 4, we highlight some failure cases of this approach. For instance, in the first left row, we note that our method cannot
detect the missing left part of the cookie. Nevertheless, we predict higher anomaly scores for the area adjacent to the defect.
In the second left row, the potato presents a tiny defect on its body, while the anomaly map — although covering the defect
correctly — predicts a much broader anomaly. In the first and second right rows, the candy cane and the hazelnut truffle
present high-frequency 2D or 3D patterns that produce higher anomaly scores compared to the real defects.

Finally, in Fig. 5 and Fig. 6 we show some additional qualitative results for all the classes of the MVTec 3D-AD and
Eyecandies datasets, respectively. It is possible to notice how M3DM [8] tends to present anomalies on a broader area,
highlighting the outline of the underlying object, while our method presents a more localized and less disturbed anomaly
map.

RGB PC GT Ψ

MVTec 3D-AD

RGB PC GT Ψ

Eyecandies

Figure 4. Failure cases. Results on MVTec 3D-AD (left) and Eyecandies (right).
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Figure 5. Qualitative results for each class of the MVTec 3D-AD dataset



Can. C. Cho. C. Cho. P. Conf. Gum. B. Haz. T. Lic. S. Lollip. Marsh. Pep. C.

R
G

B
PC

G
T

M
3D

M
O

ur
s

Can. C. Cho. C. Cho. P. Conf. Gum. B. Haz. T. Lic. S. Lollip. Marsh. Pep. C.

R
G

B
PC

G
T

M
3D

M
O

ur
s

Figure 6. Qualitative results for each class of the Eyecandies dataset
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