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A. Data

This section offers a detailed account of the data’s origins
and the methodologies employed for its processing.

A.l. Text Data

Text descriptions sourced from publicly available online
datasets are often marked by redundancy, ambiguity, and
insufficient detail. To address these issues, it is necessary
to preprocess the descriptions to render them more practical
and usable. For generating practical text descriptions, we
implemented a three-tiered process leveraging GPT-4 [28].
This encompasses filtering text to discard non-essential
details, scoring text for assessing utility, and rewriting text
to improve clarity and applicability. Our goal is to identify
text descriptions that significantly contribute to mastering
open-vocabulary physical skills from a robust pre-existing
dataset, and to standardize the collection of text instructions.

Filter text Initially, we compiled 89,910 text entries
from HumanML3D [7] and Babel [33], discovering substan-
tial repetition, including exact duplicates, descriptions of
akin actions (e.g., “A person walks down a set of stairs” vs.
“A person walks down stairs”), frequency-related repetitions
(e.g., “A person sways side to side multiple times” vs. “A
person sways from side to side”), and semantic duplicates
(e.g., “The person is doing a waltz dance” vs. “A man
waltzes backward in a circle”).

To address this issue, we initiated a deduplication pro-
cess, first eliminating descriptions that were overly brief
(under three tokens) or excessively lengthy (over 77 tokens).
We then utilized the LLAMA-2-7B MODEL with its 4096-
dimensional embedding vector for further deduplication. By
computing cosine similarities between each description pair
and applying a 0.92 similarity threshold, descriptions exceed-
ing this threshold were considered repetition. This procedure
refined our dataset to 4,910 unique descriptions.

Scoring text After filtering out duplicates and semanti-
cally similar actions, we encountered issues like typographi-
cal errors, overly complex descriptions, and significant am-
biguities in the remaining texts. These problems rendered
the descriptions unsuitable for generating actionable human
motion skills despite their uniqueness.

To further refine our text instructions, we evaluated the
remaining descriptions for their suitability in model process-
ing and practical motion generation. Our evaluation, detailed
in Fig. A1, focused on fluency, conciseness, and the speci-
ficity of individual human poses within a brief sequence of
frames. Descriptions that were direct and descriptive, con-
taining clear verbs and nouns, were preferred over those
with a sequential or ambiguous nature. Using a standard-
ized scoring process, we ranked the action descriptions by
their scores. After addressing issues in an initial round of
scoring, a second evaluation was conducted to fine-tune our
selection, as mentioned in Fig. A2. This led to the exclusion

Score Prompt I

You are a language expert. Please rate the following
actions on a scale of 0 to 10 based on their use of
language. The requirements are:

1. The description should be fluent and concise.

2. The description should correspond to a single hu-
man pose, instead of a range of possible poses.

3. The description should describe a human pose at a
short sequence of frames instead of a long sequence
of frames (this requirement is not mandatory).

4. If the description contains sequential logic, rate it
lower. "Walk in a circle” is a kind of sequential
logic.

5. Except for the subject, the description should have
only one verb and one noun.

6. If the description is vivid(like ”dances like Michael
Jackson”), rate it higher.

Here are some examples you graded in the last round:
e 6 - A person is swimming with his arms.

e 3 - Sway your hips from side to side.

e 7 - A person smashed a tennis ball.

* 4 - A person is in the process of sitting down.

* 5 - A person brings up both hands to eye level.
* 9- A person dances like Michael Jackson.

e 2 - A person packs food in the fridge.

e 5 - A person flips both arms up and down.

* 8 - Looks like disco dancing.

* 3 - Kneeling person stands up.

e [ - A person does a gesture while doing kudo.

* 6 - A person unzipping pants flyer.

* 0 - then kneels on both knees on the floor.

» 2 - A person is playing pitch and catch.

* [ - A person gesturing them walking backward.
* 4 - A person seems confident and aggressive.

e [ - A person circles around with both arms out.
e 5 - A person prepares to take a long jump.

* 6 - A person jumps twice into the air.

* 0 - Turning around and walking back.

Now, please provide your actions in the format ’x -
yyyy, where ’x’ is the score, and ’yyyy’ is the original
sentence. Please note that Do not change the original
sentence.

Figure Al. Score Prompt I. This prompt focuses on filtering text
descriptions for fluency, conciseness, and specificity, particularly
targeting individual human poses within a short sequence of frames.

of descriptions within certain score ranges (0-0.92, 0.98-
0.99), resulting in a curated dataset of 1,896 unique action
descriptions optimized for model training.



Score Prompt I1

You are a language expert. Please rate the following
actions on a scale of 0 to 10 based on the ambiguity of
the description. Examine whether this action descrip-
tion corresponds to a unique action. If the description
corresponds to fewer actions, like “wave with both
arms”, rate it higher. If the description corresponds to
abundant actions, like do yoga”, rate it lower.

e 7 - grab items with their left hand.
* 8 - hold onto a handrail.

* 9 - do star jumps.

e 5 - arms slightly curled go from right to left.
e 3 - sit down on something.

* 9 - kick with the right foot.

e 7 - stand and put arms up.

* 9 - cover the mouth with the hand.
* 8 - stand and salute someone.

e 2 - break dance.

* 6 - spin body very fast.

* 7 - open bottle and drink it.

* 2 -do the cha-cha.

e 5 -do sit-ups.

e 4 - slowly stretch.

* 6 - cross a high obstacle.

7 - grab something and shake it.

4 - lift weights to get buff.

e 8 - move left hand upward.

7 - walk forward swiftly.

Now, please provide your actions in the format ’x -
yyyy, where ’x’ is the score, and "yyyy’ is the original
sentence. Please note that Do not change the original
sentence.

Figure A2. Score Prompt II. This prompt selects for direct and
richly detailed action descriptions, prioritizing clarity with a distinct
verb and noun over descriptions based on sequential or complex
logic.

Rewrite text In the final refinement phase, we address
the specificity of action descriptions, crucial for accurately
generating motions. Vague descriptions, such as ’jump rope’,
can lead to ambiguous interpretations and various motion
realizations, challenging the model’s training due to the
similarity of rewards for different motions. This observation
is consistent with other motion generation studies utilizing
CLIP [11, 43].

To enhance the clarity and effectiveness of the reward
calculation, we rephrase and detail the descriptions. For
instance, ’jump rope’ is clarified to ’swinging a rope around
your body’, with further details like 'Raise both hands and
shake them continuously while simultaneously jumping up

with both feet, repeating this cycle’. Additionally, we break
down actions into more discrete moments, such as ’legs off
the ground, wave hand’, to improve the reward function’s
precision. Our methodology for this textual refinement is
detailed in Fig. A3.

Rewrite Prompt

Describe an action of instruction for a humanoid agent.
The description must satisfy the following conditions:

1. The description should be concise.

2. The description should describe a human pose in a
single frame instead of a sequence of frames.

3. The description should correspond to only one hu-
man pose, instead of a range of possible poses,
minimize ambiguity.

4. The description should be less than 8 words.

5. The description should not contain a subject like
”An agent”, ”A human”.

6. The description should have less than two verbs
and two nouns.

7. The description should not have any adjectives, ad-
verbs, or any similar words like "with respect”.

8. The description should not include details describ-
ing expressions or fingers and toes.

For example, it’s better to describe “take a bow” as
“bow at a right angle.”

Figure A3. Rewrite Prompt. This prompt is designed for rephras-
ing action descriptions to enhance clarity and incorporate additional
details, aiming to improve the specificity and effectiveness of the
generated motions.

A.2. Motion Data

For the study, we curated 93 motion clips, organizing them
by movement type and style into a structured dataset. We
delineated movements into three categories: move_around,
act_in_place, and combined; and styles into five categories:
attack, crawl, jump, dance, and usual. The clips were then
classified into these eight categories, with a weighting sys-
tem applied based on the inverse frequency of each category
to enhance the representation of less common actions. For
motions that spanned multiple categories, their weights were
averaged based on their inverse frequency values. This ap-
proach aimed to ensure a balanced action distribution within
the dataset, emphasizing the inclusion of rarer actions to
avoid overrepresentation of any single action type. The cat-
egorization and its impact on the dataset distribution are
illustrated in the diagram available in Fig. A10.
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B. Experiments

This supplementary section expands on the experimental
analyses from Sec. 4, focusing on the text description. Be-
yond the quantitative metrics addressed in the main docu-
ment, we explore the changes in reward function dynamics
pre- and post-text refinement across various instructions.
This includes a detailed comparison of CLIP similarity
scores during training to critically evaluate the effectiveness
and design of different reward functions.

B.1. Text Enhancement

Utilizing the text enhancement strategy described in Ap-
pendix A.1, we have refined action descriptions from exist-
ing open-source datasets, reducing ambiguity and enhancing
clarity and applicability. To gauge the impact of these refined
descriptions on training efficacy, we track and compare the
reward feedback during the training phases.

Selecting four instructions at random from our dataset
for illustration, we compare reward trends before and after
text enhancements—represented by green and red curves,
respectively, in our graphs. This comparison reveals that
refined instructions consistently yield superior reward trajec-
tories from the start, showing a swift and steady ascent to a
performance plateau. This indicates that text enhancement
notably improves policy training efficiency and convergence
speed. Specifically, for intricate actions like Yoga (as shown
in the top right figure of Fig. A4), refined instructions result
in a more stable and gradual reward increase, signifying
improved training stability and model performance.

legs off the ground, wave hands
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Figure AS5. The CLIP similarity calculated by different reward
designs.

B.2. Implementation Details
B.3. Reward Function Analysis

To evaluate and compare various reward function designs,
we use cosine similarity between image and text features as
a uniform metric, accommodating the differing numerical
scales inherent to each reward design. As depicted in Fig. A5,
we represent five reward functions using distinct colors, with
our method marked in purple.

Aligning with discussions in the main text (Fig. 5), we
examine four instructions from our user study for a detailed
comparison. Our findings indicate that our method uniformly
improves image-text alignment throughout training, achiev-
ing consistent convergence. While some methods exhibit
comparable performance on select instructions, they gener-
ally show less consistency, with initial gains often receding
over time. In contrast, our approach demonstrates robustness
against the variabilities of open-vocabulary training, leading
to stable and reliable performance improvements.

To assist readers in replicating our work, we have in-
cluded a comprehensive breakdown of hyperparameter set-
tings in Tabs. Al and A2.

B.4. Interaction Motions

Within the main text, we highlighted AnySkill’s profi-
ciency in mastering tasks involving interactions with diverse
objects, underscoring its capability to adapt across a spec-
trum of interaction scenarios. For experimental validation,
we deliberately chose a range of objects, both rigid (e.g.,
pillars, balls) and articulated (e.g., doors, chairs), to demon-
strate the method’s versatility. The quantitative analyses of
these object interactions, as detailed in Appendix B.2, af-
firm the flexibility of our approach. Our system is shown to
adeptly navigate a variety of action requirements, as speci-



(c) strike the pillar

Figure A6. Additional results of interaction motions.

Table Al. Hyperparameters used for the training of low-level

controller.
Hyper-Parameters Values
dim(Z) Latent Space Dimension 64
Encoder Align Loss Weight 1
Encoder Uniform Loss Weight 0.5 Table A2. Hyperparameters used for the training of high-level
w gp Gradient Penalty Weight 5 controller.
Encoder Regularization Coefficient 0.1
Samples Per Update Iteration 131072 Hyper-Parameters Values
Policy/Value Function Minibatch Size 16384 w gp Gradient Penalty Weight 5
Discriminators/Encoder Minibatch Size 4096 Encoder Regularization Coefficient 0.1
~ Discount 0.99 Samples Per Update Iteration 131072
Learning Rate 2x107° Policy/Value Function Minibatch Size 16384
GAE(\) 0.95 Discriminators/Encoder Minibatch Size 4096
TD(X) 0.95 ~ Discount 0.99
PPO Clip Threshold 0.2 Learning Rate 2x107°
T Episode Length 300 GAE()\) 0.95
TD(N) 0.95
PPO Clip Threshold 0.2

fied by different text descriptions, maintaining efficacy even
when faced with repetitive initial conditions or identical ob-
jects.

T Episode Length 300




Figure A7. Atomic actions from the trained low-level controller.
In each subfigure, the green agent shows the reference motion from
the dataset, and the white agent shows our learned atomic action.



sit on the indoor sofa sit in an outdoor chair
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Figure A8. Real-time scene interaction. We employed both indoor and outdoor scenes within IsaacGYM. Throughout the training process,
we conducted real-time rendering and obtained feedback on physical interactions.



(a) wave hands up and down

(b) jump high

(c) left leg forward, right leg retreats

(d) raise one arm, put the other hand down

(e) raise hands above head, bend body

(f) hit a tennis smash with arm

Figure A9. More results of open-vocabulary physical skills.
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Figure A10. The distribution of actions and their corresponding categories.





