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S1. Architecture of the key-based invertible
steganographic network

The key-based invertible steganographic network (ISN)
consists of eight unit blocks {B1,B2, ...,B8}, each of which
shares the same network architecture but learns with differ-
ent weights. In each unit block, there are three sub-blocks
{ℵ1,ℵ2,ℵ3}, each also sharing the same architecture with
different weights. Each of {ℵ1,ℵ2,ℵ3} is a typical Dense
Block, where each layer receives feature maps from all pre-
ceding layers. Taking ℵ1 as the representative, it consists of
5 convolutional layers {C1, C2, ..., C5}. C1 takes an input
with 12 channels and outputs with 32 channels, with a ker-
nel size of 3 × 3, stride of 1, and padding of 1. C2 to C4

incrementally increase the input channels by concatenating
the output of the previous layers. For instance, we fed C2

with (32 + 32) channels, while C3 with (32 + 2× 32), and
so on. C5 outputs with 12 channels, consolidating the con-
catenated features of {C1, C2, ..., C4}. A LeakyReLU is
applied after each convolutional layer, except C5. Given an
input image with the shape of {3, H,W}, we will perform
discrete wavelet transform (DWT) on it and then feed the
transformed image, with the shape of {12, H/2,W/2}, to
the key-based ISN. For clarity, we define the notations used
to train the key-based ISN in Tab. A1.

With xc and xs as the input, the forward hiding pass Hs

of the key-based ISN can be formulated as follows:
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where x
(1)
c = xc, x(1)

e = xe, k denotes the k-th block, and
λ controls the weight of the exponential operation. We take
xs = x

(8)
c and z = x

(8)
e as the outputs of the forward hiding

calculation, where z is the lost information and is discarded.
By retaining the weights of all the modules from the for-

ward pass, and given the key image ks, the reverse pass of
key-based ISN can be formulated as follows:
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ẑ(k)− ℵ3

(
xs

(k)
))

⊘ exp
(
λ ·ℵ2

(
x(k)
s

))
, (22)

x(k−1)
s = x(k)

s − ℵ1

(
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where x
(8)
s = xs, ẑ(8) = ks, ⊘ denotes element-wise di-

vision operation. We take x̂c = x
(1)
s and x̂e = ẑ(1) as

Table A1. Notations and Representations.

Notation Representation

xc Cover images (randomly sampled owner-side passport images)
xs Stego images (generated user-side passport images)
xe Secret images (randomly sampled user’s ID images)
x̂e Revealed secret images (revealed user’s ID images)
x̂c Revealed cover images (revealed owner-side passport images)
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Figure A1. Performance of our approach under random passport
attacks across various datasets, with models incorporating BN.

0 20 40 60 80 100
Pruning rate (%)

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Deployment, Norm 
Verification, Norm 
Signature, Norm 
Deployment, Random 
Verification, Random 
Signature, Random

(a) CIFAR-100 with BN
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Figure A2. Performance of our method under random and ℓ1 norm
pruning attacks.

the output of the reverse pass. By conducting inverse dis-
crete wavelet transform (IDWT) on x̂e, we can obtain the
revealed hidden image in the spatial domain.

S2. Supplementary experimental results
Ownership ambiguity attack robustness by trials and

errors.
In the existing passport scheme, the most direct way to

maliciously claim ownership is by trying randomly selected
passports. As the strict avalanche criterion of the SHA hash
function ensures that the forged signature will be different
from the genuine signature in approximately 50% of bits,
the random passport ambiguity attack can never be success-
ful for our method.



To simulate this attack, we randomly select 100 images
from the same distribution as the genuine passport to use as
forged owner-side passports. From the frequency distribu-
tions shown in Fig. A1, no random passports can gain suc-
cessful ownership verification over the four datasets and the
two networks. Specifically, for ResNet-18 on the Caltech-
101 dataset, we observed a peak accuracy of 13.17%. How-
ever, this is significantly below that task’s τf = 73.56%,
and the AD of 58.81% has far exceeded τd = 0.05%.

Removal attack robustness of pruning with more dif-
ferent settings. Fig. A2 illustrates the performance trends
of our method under random and ℓ1 norm pruning attacks
on ResNet-18 with more different settings. The same phe-
nomenon as the main experiment is observed. That is, the
SA does not degrade much until the model performance
has dropped dramatically. This indicates that our method
is highly resilient against pruning attacks.
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