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6. Derivation of Coordinate projection

Assume that ppixel
1 = (xpixel

1 , ypixel1 ) is a point on the pixel
plane corresponding to Camera 1, and it is converted to ho-
mogeneous coordinate for subsequent calculations:
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To obtain the 3D point pcamera
1 in the coordinate system

of Camera 1, the homogeneous coordinate (ppixel
1 )homo is

multiplied by the inverse of the intrinsic matrix of Cam-
era 1, then multiplied by the depth value of ppixel

1 , which is
an output of volume rendering:
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Then the 3D point pcamera
1 is converted to homogeneous

coordinate and multiplied by the pose matrix P1 of Cam-
era 1 to obtain the homogeneous coordinate (pworld

1 )homo

in the world coordinate system:
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A 3D point’s coordinate in the world coordinate system can
be projected onto an image plane from any camera perspec-
tive. Therefore, pworld

1 is subsequently projected onto the
image plane of Camera 2. To achieve this, (pworld

1 )homo

is first converted to the camera coordinate system of Cam-
era 2 by multiplying with the inverse of the pose matrix P2

of Camera 2:
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Then the resulting homogeneous coordinate is converted to
Euclidean coordinate and projected onto the imaging plane
at a distance of 1 from the Camera 2’s origin:
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Finally, the pixel coordinate ppixel
2 = (xpixel

2 , ypixel2 ) is ob-
tained by multiplying the point on the imaging plane with
the intrinsic matrix K2 of Camera 2:
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and the pixel coordinate of ppixel
2 is obtained by converting

the homogeneous coordinate to Euclidean coordinate:

ppixel
2 =

 fx
2 xcamera

2
zcamera
2

+ cx2
fy
2 ycamera

2

zcamera
2

+ cy2

!
. (18)

Now, the semantic label corresponding to the point ppixel
2

in the labeled Image 2 can be selected as the proxy label
for ppixel

1 in the unlabeled Image 1. Based on this, the pro-
jected semantic loss for unlabeled images can be calculated
in a semi-supervised manner.



(a) Metrics for Scene A

(c) Metrics for Scene C (d) Metrics for Scene D

(b) Metrics for Scene B

Figure 6. Evaluation metrics for scene modeling under different training configurations.

(a) semantic results rendered from different views (b) reconstruction results
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Figure 7. Effect of distortion loss. (a) displays the rendering results of the semantic mask from multiple views. (b) presents a visual
comparison of the scene reconstruction effect of the model under two different conditions.

7. Enhanced Analysis of Scene Modeling with
Neural Radiance Fields

In this section, we delve deeper into the nuances of scene
modeling, specifically focusing on the training of Neural
Radiance Fields [19] (NeRFs) during the scene modeling
phase. We conducted a series of ablation experiments to
assess the impact of various training enhancements on the
quality of the rendered scenes. A subset of scenes was
chosen for this experimental evaluation, where we com-

pared the results of using Instant-NGP [20] alone, Instant-
NGP with added distortion loss [2] as a regularization term,
Instant-NGP trained with the S3IM loss [31] and Instant-
NGP trained with the distortion and S3IM loss.

As with Sec 4.1, we selected 120 images per scene and
divided them into training and testing sets at an 85% to
15% ratio. Each scene was trained for 30 epochs, and the
PSNR, SSIM, and LPIPS metrics were recorded for each
epoch on the test images. Fig. 6 illustrates the variations in



Figure 8. The elaborate process of text region surface modeling: (a) illustrating the general procedure of text region modeling, and (b)
elucidating the details of text surface construction in 3D space.

test metrics for four distinct scenes under various configu-
ration conditions. From these metrics, it is observable that
the inclusion of distortion loss slightly degrades the render-
ing performance of NeRF. However, the utilization of the
S3IM training paradigm not only fosters faster convergence
but also mitigates the adverse effects of distortion loss, re-
sulting in a slight enhancement across all metrics. This val-
idates the efficacy of our configuration for scene modeling.

The rationale behind incorporating distortion loss, de-
spite its mild negative impact on synthetic image quality,
was further validated through comparative analysis. We
examined the significance of distortion loss for accurate
scene geometry construction and its subsequent influence
on semi-supervised semantic learning. Fig. 7 (a) displays
the effect of two settings on the semantic learning of text re-
gions within the NeRF training outcomes. Fig. 7 (b) show-
cases the learning results of scene geometry from a dis-
tant viewpoint under both settings. We observed that omit-
ting distortion loss led to the emergence of many cloud-like
floaters around the scene. While these floaters could en-
hance the image rendering effects from specific viewpoints,
they proved to be detrimental from others. More specif-
ically, these floaters introduced incorrect scene geometry,
which significantly increased the error in coordinate projec-
tion and reduced the effectiveness of semantic learning for
unlabeled text, potentially causing overfitting to labeled im-

ages. Consequently, incorporating distortion loss serves to
regulate the learning process of the radiance field. It ensures
that voxels with higher density are more accurately concen-
trated on the actual surfaces of the scene, which enhances
geometric reconstruction, reduces coordinate projection er-
rors, and amplifies the impact of semi-supervised learning
on text regions.

8. Precise Text Surface Modeling
In this section, we present a detailed account of text sur-
face modeling, supplementing the description provided in
Sec 3.2. The overall workflow for modeling the surface of
text regions is illustrated in Fig. 8 (a). Initially, we leverage
the scene geometry information (depth maps) constructed
by NeRF to project the 2D semantic masks of text regions
from various training viewpoints into 3D space, resulting
in a point cloud representation of the text areas. Subse-
quently, we fit a continuous surface to each text region’s
point cloud, delineate the contours, and generate the pose
in 3D space. For rendering images from novel viewpoints,
the constructed text region annotations are simply projected
from 3D space into the corresponding 2D views, enabling
the annotation of scene text content for that viewpoint.

Fig. 8 (b) details the construction process of the text sur-
face. Upon obtaining the 3D point cloud of the text surface,
we first filter out obvious outliers from the cloud. Then,



Class_0 Class_1

Class_2

Class_3
Class_4

Class_5

Class_6

Class_7
Class_8Class

_9

Cla
ss_

10

Cl
as
s_
11

Cl
as
s_
12

Cl
as
s_
13

Cla
ss_
14

Class
_15

80

60

40

20

Class_0 Class_1

Class_2

Class_3
Class_4

Class_5

Class_6

Class_7
Class_8Class

_9

Cla
ss_

10

Cl
as
s_
11

Cl
as
s_
12

Cl
as
s_
13

Cla
ss_
14

Class
_15

80

60

40

20

Class_0 Class_1

Class_2

Class_3
Class_4

Class_5

Class_6

Class_7
Class_8Class

_9

Cla
ss_

10

Cl
as
s_
11

Cl
as
s_
12

Cl
as
s_
13

Cla
ss_
14

Class
_15

80

60

40

20

Precision Recall F-score
(a) DB performance comparison
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(b) EAST performance comparison

Figure 9. Performance comparison of detectors trained on the two
datasets across various text pose categories.

a smooth plane is fitted from these points using the least
squares method, representing the surface where the text re-
gion resides. Next, we calculate the projection points of the
cloud onto this fitted plane and determine the text region’s
contour bounding box based on these projections. Subse-
quently, the normal vector of the text surface is used as the
z-axis component of the rotation matrix in the text region’s
pose, while the directions along the longer and shorter sides
of the bounding box represent the x and y-axis components,
respectively. The center of the text contour is calculated to
serve as the translation vector for the pose, thus completing
the construction process of the text region’s surface pose.

9. More experiment results on robustness eval-
uation.

This section demonstrates the unique advantages of our
scene text image synthesis method in excavating model bi-
ases and appraising performance. To this end, we con-
ducted a text pose robustness evaluation of the text detec-
tors DB [15] and EAST [38] mentioned in multi-view eval-
uation part of Sec 4.2. Text instances from our test set
were categorized into pose categories as analyzed in Sec
4.1, and the detectors’ precision, recall, and F-score were
computed for each category. As depicted in Fig. 9 (a)
and (b), we observed a pronounced bias in detectors trained
on the randomly sampled dataset, with disparities in F-
scores across pose categories peaking at 59.93 and 58.02 for
DB and EAST, respectively. Conversely, detectors trained
on the viewpoint-balanced dataset exhibited greater robust-
ness, narrowing the F-score discrepancy to 30.05 and 27.69
across different pose categories. We noted that text with
poses perpendicular to the camera’s capture angle achieved
superior detection performance, while poses with signifi-

cant perspective distortion posed greater challenges. More-
over, a comparative analysis of both detectors across iden-
tical pose categories revealed that models trained with a
viewpoint-balanced training set outperformed those trained
on randomly sampled data. This was particularly evident
for text instances with intense perspective distortion, which
are inherently more difficult to detect. These experiments
further corroborate the efficacy of our viewpoint-balancing
strategy in synthesizing quality data and training models
with enhanced robustness against text pose variations.

10. Additional Experimental Subjects
Previous research primarily utilized EAST, due to its
straightforward architecture, rapid detection capabilities,
and high accuracy, establishing it as a time-tested model. In
our work, we went beyond prior conventions and incorpo-
rated another detector DB, which holds a more prominent
influence compared to EAST and also serves as a funda-
mental model in numerous open-source OCR frameworks,
such as OpenCV, PaddleOCR, and WeChatOCR engine.
Meanwhile, we also have conducted additional experiments
using two recent text detectors, TextFuseNet and MixNet.
The results can be found in Table 3. It should be noted
that the TextFuseNet pipeline involves instance segmenta-
tion at the character level, so we modified the original im-
plementation to avoid using character-level annotation dur-
ing training. And for MixNet, we also adapted the original
code, since we found the model with the midline prediction
branch is hard to converge and the authors did not perform
experiments on the benchmarks we utilized. Overall, the
performance of these two detectors is superior; however,
they exhibit more complex structures and necessitate exten-
sive data processing operations.

Train data TextFuseNet MixNet

IC13 IC15 MLT17 IC13 IC15 MLT17
VISD-10K 67.41 62.05 43.14 72.41 64.90 44.21
ST3D-10K 64.13 65.31 48.13 71.58 67.12 49.16

UT-10K 68.44 59.74 50.60 74.24 60.84 52.04
Ours-10K 70.16 67.28 51.01 75.30 68.39 54.28

Real 54.42 79.46 60.31 55.31 82.09 62.76
VISD-10K + Real 72.30 84.02 62.12 81.41 84.03 64.78
ST3D-10K + Real 71.98 83.58 61.73 80.63 85.44 64.07

UT-10K + Real 74.16 85.47 63.17 81.87 86.18 65.84
Ours-10K + Real 76.01 85.93 64.24 82.07 87.52 66.17

Table 3. Results (F1-score) of TextFuseNet and MixNet pretrained
on synthetic and finetuned on real datasets.

11. More synthesized results
In this section, we provide additional examples of the syn-
thesized scene text images in Fig. 10 and 11.



Figure 10. Results of generated scene text images



Figure 11. Results of generated scene text images
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