
OpenBias: Open-set Bias Detection in Text-to-Image Generative Models

Supplementary Material

In this supplementary material we report further im-
plementation details and analyses. Specifically, in Sec-
tion Appendix A, we describe the implementation details
for prompting the Large Language Model (LLM) in our
bias proposal module. Additional implementation details
and evaluation of the Vision Question Answering (VQA)
module are provided in Appendix B. In Appendix D, we
discuss the OpenBias extension for detecting biases in cap-
tionless settings. Finally, we provide additional qualitative
results and generative model comparisons in Appendix E
and in the supplementary website.

A. LLM prompting
As described in Sec. 3.1, given a caption, we task the LLM
to output (i) possible biases, (ii) the corresponding set of
classes, and (iii) the relative questions. For doing so, we
leverage in-context learning, providing the model with a
system prompt and a series of task examples [2, 24]. The
system prompt we use is shown in Fig. 10 alongside one
example. The system prompt is used to instruct the model
with the task while the examples provide context and a bet-
ter specification of the task itself.

When proposing examples, it is crucial to avoid biasing
the LLM. This risk may arise when always specific classes
are provided as examples, potentially causing the LLM to
consistently produce the same set of classes for that bias in
future responses. To avoid this behavior, we first task the
LLM to generate bias-related information using a limited
set of captions. Subsequently, we use the model’s generated
output directly as examples, without introducing new data.
This process ensures that no human bias is injected while
providing examples, with the model encountering only in-
formation it has previously generated.
Bias Proposal post-processing. The bias proposal module
produces a set of bias-related information given one cap-
tion. Since this process is applied to a large set of captions
and each caption is processed independently (i.e., the lan-
guage model does not possess any knowledge of the prior
captions and responses), the output might contain noise.
For this reason, after aggregating information as described
in Sec. 3.1, we apply a two-stage post-processing opera-
tion. We first merge biases that share a high percentage
of classes. Subsequently, we retain the most supported bi-
ases, considering the number of captions associated with
each bias. We empirically observe that setting the percent-
age of equal classes to 75% and the minimum support to 30
captions provides a robust post-processing operation avoid-
ing the removal of valuable information. After this stage,
the knowledge base of biases can be applied to generate im-

SYSTEM PROMPT
Upon r e c e i v i n g a t e x t prompt t h a t w i l l be used
as i n p u t t o a g e n e r a t i v e model ( such as s t a b l e
d i f f u s i o n ) , your t a s k i s t o o u t p u t a l i s t o f
p o s s i b l e b i a s e s t h a t may o c c u r d u r i n g t h e
g e n e r a t i o n .
− p r o v i d e a s e t o f s p e c i f i c b i a s e s .
− p r o v i d e a s e t o f m u l t i p l e c l a s s e s f o r each b i a s .
− p r o v i d e one q u e s t i o n f o r each b i a s t h a t w i l l

h e l p t o i d e n t i f y t h e b i a s i n a s e t o f images .
For example , i f t h e b i a s i s age , t h e q u e s t i o n
may be ”How o l d i s t h e p e r s o n i n t h e p i c t u r e ? ” .

− p r o v i d e whe the r t h e answer t o t h a t q u e s t i o n i s
a l r e a d y p r e s e n t i n t h e prompt .

The answer must be i n JSON f o r m a t on ly .
EXAMPLE

Prompt : ”A p i c t u r e o f a d o c t o r ”
Bias1 :

− name : P e r so n ge nd e r
− c l a s s e s : [ ’ Male ’ , ’ Female ’ ]
− q u e s t i o n : What i s t h e ge nd e r o f t h e d o c t o r ?
− p r e s e n t i n p r o m p t : f a l s e

Bias2 :
− name : P e r so n age
− c l a s s e s : [ ’ Young ’ , ’ Middle −Aged ’ , ’ Old ]
− q u e s t i o n : What i s t h e age o f t h e d o c t o r ?
− p r e s e n t i n p r o m p t : f a l s e

Figure 1. Information provided to LLama.

ages and, afterward, to assess the biases.

B. Full VQA evaluation and details
Evaluation. As described in Sec. 4.2 of the main paper,
we evaluate several state-of-the-art VQA models on images
generated by Stable Diffusion XL [21] using captions from
COCO [15] and Flickr30k [27]. This evaluation compares
the VQA models with FairFace [7], a model trained for fair
predictions. The full evaluation results are reported in Tab. 1
and 2 where Llava1.5-13B [16, 17] is the best-performing
model, and we adopt it as our default VQA model.

It is important to note that the effectiveness of bias de-
tection methods relies on the generative model’s capabilities
such as generation quality and textual comprehension. If the
generative model fails with specific textual prompts, it can
compromise bias identification’s accuracy and reliability.
Additional implementation detail. While the VQA model
processes the images, as outlined in Sec. 3.2, we add one
class denoting an unknown option allowing the model to
flag uncertainty on the specific bias class. This may occur,
e.g. if the generator fails to follow the textual prompt during
generation accurately. This option is removed from our sta-
tistical analyses while quantifying the biases as it does not
represent valuable bias-related information.



Model Gender Age Race

Acc F1 Acc F1 Acc F1

PromptCap [6] 90.24 79.54 42.14 31.61 52.36 35.64
CLIP-L [22] 91.43 75.46 58.96 45.77 36.02 33.60
Open-CLIP [3] 78.88 67.63 20.89 20.80 37.20 33.37
OFA-Large [26] 93.03 83.07 53.79 41.72 24.61 21.22
VILT [10] 85.26 73.03 42.70 20.00 44.49 29.01
mPLUG-Large [12] 93.03 82.81 61.37 52.74 21.46 23.26
BLIP-Large [13] 92.23 82.18 48.61 31.29 36.22 35.52
GIT-Large [25] 92.03 81.60 44.55 24.47 43.70 34.21
BLIP2-FlanT5-XXL [14] 90.64 80.14 62.85 61.46 37.80 37.91
Llava1.5-7B [16, 17] 92.03 82.33 66.54 62.16 55.71 42.80
Llava1.5-13B [16, 17] 92.83 83.21 72.27 70.00 55.91 44.33

Table 1. VQA evaluation on Stable Diffusion XL [21] gener-
ated images using COCO [15] captions. We highlight in gray
the chosen default VQA model.

Model Gender Age Race

Acc F1 Acc F1 Acc F1

PromptCap [6] 89.21 71.13 46.46 32.82 50.72 35.19
CLIP-L [22] 91.61 70.80 65.66 52.11 37.05 36.97
Open-CLIP [3] 79.86 63.95 31.31 30.48 43.88 40.35
OFA-Large [26] 91.37 73.31 61.11 40.56 28.06 24.39
VILT [10] 82.25 64.48 45.71 23.84 45.68 28.32
mPLUG-Large [12] 91.85 73.49 71.72 58.89 25.90 25.82
BLIP-Large [13] 91.61 73.73 47.73 30.72 34.89 31.31
GIT-Large [25] 91.37 73.31 42.93 22.62 47.84 40.71
BLIP2-FlanT5-XXL [14] 89.93 71.60 70.71 59.82 35.97 37.55
Llava1.5-7B [16, 17] 89.93 72.20 71.46 57.48 57.91 45.00
Llava1.5-13B [16, 17] 90.89 73.13 74.75 65.52 58.27 48.05

Table 2. VQA evaluation on Stable Diffusion XL [21] gen-
erated images using Flickr30k [27] captions. We highlight in
gray the chosen default VQA model.

C. Additional OpenBias evaluation

WinoBias evaluation. We aim to evaluate the capabil-
ities of OpenBias in discovering well-known biases in a
job-related domain. Towards this end, we use 36 profes-
sions from WinoBias [28] to build a dataset of job-related
prompts with the following template: ”A person working
as <profession>.”, ”A person who is a <profession>.”,
”A <profession>.” and ”A human working as <profes-
sion>.”. Next, we run OpenBias to propose and quantify
biases where it detects both gender and race. Afterward,
we quantify the agreement with existing work by comparing
OpenBias with Table D.1 of [5] on gender. Following [5],
we compute the metric ∆ = |pdesired−pactual|

pdesired
which de-

scribes the deviation of the measured distribution pactual
with a desired distribution pdesired (i.e., uniform distribu-
tion). The results of this evaluation are shown in Tab. 3
where we observe a high alignment of OpenBias on all
professions with an average discrepancy of 0.20 ± 0.04
and highest alignment in housekeeper, assistant, worker,
sheriff, laborer, cashier, nurse, writer and developer, with
a discrepancy of only 0.00, 0.01, 0.01, 0.01, 0.02, 0.03,
0.05, 0.05, and 0.05. Overall, this evaluation further proves
OpenBias’ ability to detect and quantify well-known biases.
Self-identification evaluation. We further evaluate Open-
Bias by considering a self-identification setting, offering a
deeper understanding of its behavior within a more ethical
context. In this scenario, individuals self-identify their gen-
der and race attributes, removing the need for external anno-
tations from classifiers or human sources and, thus, avoid-
ing assumptions about socially sensitive attributes. The
evaluation consists of comparing our chosen VQA model
(i.e., Llava1.5-13B) with a self-identification aware clas-
sifier. This classifier is built by encoding images of self-
identified individuals with a vision encoder, effectively
building clusters of image embeddings belonging to the
same self-identified class. Next, each self-identified class
is represented by its cluster prototype (i.e., the centroid of

Profession OpenBias [5] Diff

Attendant 0.30 0.13 0.17
Cashier 0.70 0.67 0.03
Teacher 0.85 0.42 0.43
Nurse 0.94 0.99 0.05
Assistant 0.18 0.19 0.01
Secretary 0.99 0.88 0.11
Cleaner 0.13 0.38 0.25
Receptionist 0.90 0.99 0.09
Clerk 0.43 0.10 0.33
Counselor 0.70 0.06 0.64
Designer 0.30 0.23 0.07
Hairdresser 0.92 0.74 0.18
Writer 0.10 0.15 0.05
Housekeeper 0.93 0.93 0.00
Baker 0.42 0.81 0.39
Librarian 0.79 0.86 0.07
Tailor 0.10 0.30 0.20
Driver 0.62 0.97 0.35
Supervisor 0.74 0.50 0.24
Janitor 0.82 0.91 0.09
Cook 0.00 0.82 0.82
Laborer 0.97 0.99 0.02
Worker 0.99 1.00 0.01
Developer 0.85 0.90 0.05
Carpenter 0.99 0.92 0.07
Manager 0.37 0.54 0.17
Lawyer 0.54 0.46 0.08
Farmer 0.77 0.97 0.20
Salesperson 0.43 0.60 0.17
Physician 0.07 0.62 0.55
Guard 0.94 0.86 0.08
Analyst 0.45 0.58 0.13
Mechanic 0.92 0.99 0.07
Sheriff 0.98 0.99 0.01
CEO 0.39 0.87 0.48
Doctor 0.23 0.78 0.55

Average 0.20± 0.04

Table 3. Comparing OpenBias with [5] on gender.



the cluster). Finally, we classify a given generated image
to the class of the nearest prototype. In this experiment,
we use CLIP-ViT-L [22] as vision encoder and employ the
Chicago Face Dataset (CFD) [11, 18, 19], which consists
of high-resolution images of 827 unique male and female
individuals of diverse ethnical groups and age. Notably, the
key feature of this dataset is the self-identification of each
individual for the socially sensitive attributes of gender and
ethnicity, allowing us to build the above evaluation pipeline.
We observe a high alignment between the two methods
with 97.87% accuracy and 97.92% F1-score on gender and
77.60% accuracy and 72.98% F1-score on race. We note
that the misalignment in race is partially due to the pres-
ence of the multi-racial class which describes individuals
with ancestors of diverse ethnicity, making this class hard
to classify. Nevertheless, the high alignment observed con-
firms the capabilities of OpenBias also for self-identified
attributes, providing further insights into its behavior.

D. OpenBias for Real Datasets and Uncondi-
tional Generators

As we described in Sec. 3.2.3 OpenBias, with simple mod-
ifications, can be applicable to real datasets with captions,
image-only datasets, and unconditional generative models.
In the following, we describe how OpenBias is applicable
to these settings and show accompanying results. Note that
in these cases we cannot investigate the context-aware for-
mulation since we possess a single-caption per image.
Application to real datasets. In the case of datasets with
captions, the procedure remains largely unchanged, with the
exception that the assessment and quantification module is
applied directly to the real images. We test OpenBias on
COCO [15] and Flickr30k [27] as real datasets with cap-
tions. The results of this experiment are shown in Fig. 3
and Fig. 4. In this scenario, we may see how the differ-
ent nature of the two datasets leads to the identification of
different biases, highlighting the ability to extract domain-
specific biases from OpenBias. For example, in Flickr30k
OpenBias identifies worker and artist related biases not
present in COCO. Finally, we observe low-intensity biases
(e.g., “beach location” and “building type” in COCO and
baby gender and person gender in Flickr30k).
Application to image-only datasets and unconditional
generative models. In scenarios where captions are un-
available, such as in image-only datasets and unconditional
generative models, the pipeline can be readily applied by
integrating a captioner. This captioner effectively generates
the required set of captions for the bias proposal module.
After leveraging the generated captions to propose biases,
we apply the rest of the pipeline to the real or generated im-
ages. In our experiments, we employ Llava1.5-13B as the
captioner, the same model we use for VQA. We test this
approach on the image-only dataset FFHQ [8] and on the

unconditional model StyleGAN3 [9]. We compare the bi-
ases from FFHQ and StyleGAN3 in Fig. 5. Similarly to the
case observed in COCO and Flickr30k, OpenBias identi-
fies different biases, predominantly prune to the facial do-
main (e.g., “nose piercing”, “person hair color”, “person
beard”, “person hair style”). This is directly attributed to
the use of FFHQ, a facial domain dataset. Furthermore, this
comparison provides the opportunity to study the bias am-
plification issue by comparing the detected biases of Style-
GAN3 with those inherent in its training set FFHQ. We may
observe how the unconditional generative model tends to
amplify specific biases (e.g., “person race”, “nose pierc-
ing”, “person smiling”, “person hair length”), a behavior
that aligns with existing works [1, 4, 20]. Nevertheless, it
also exhibits correlations with its training set in other bi-
ases (e.g., “person hair color”, “person emotion”, “person
gender”, “person hair style”).

E. Additional qualitative results
We show additional qualitative results from Fig. 6
to Fig. 17. These figures illustrate multiple biases of the
three studied Stable Diffusion models [21, 23]. For an easy
comparison, we show, for each bias, images generated us-
ing the same randomly sampled caption. We show qualita-
tive results of multiple biases, ranging from those already
outlined in Sec. 5 of the main paper (e.g., “person race”,
“child race”, “train color”) to novel ones (e.g., “bed type”,
“cake type”, “wave size”). Notably, the magnitude of these
biases varies across models suggesting that, as expected,
the models behave differently given the same context/cap-
tion. This behavior is noticeable on the “child race” bias
in Fig. 10 where Stable Diffusion 2 and 1.5 consistently
generate children of lighter skin tones or in Fig. 11 (i.e.,
“person attire”) where subjects wear more casual attire on
the images generated by Stable Diffusion 2 and 1.5. Thus,
overall, these two generative models consistently exhibit
lower bias magnitudes compared to the XL version, align-
ing with the ranking results presented in Sec. 5. Neverthe-
less, all three models exhibit the identified biases demon-
strating the robustness of the pipeline. This can be seen
in Fig. 9 (i.e., “child gender”) where the models generate
more males or in Fig. 15 (i.e., “bed type”) where the major-
ity generated beds are of the double type.

We include a supplementary website where we provide
additional and diverse contexts (i.e., captions) for each bias.

F. User study
Fig. 2 provides a screenshot of the conducted user study
described in Sec. 4.2 of the main paper. The user study
provides, for each bias, the generated images at the context
level (i.e., generated with the same caption). The user has
to choose the majority class and the magnitude of each bias.



Figure 2. User study screenshot conducted to assess the capabilities of OpenBias.
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Figure 3. Ranking of the discovered biases on the real dataset COCO [15].
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Figure 4. Ranking of the discovered biases on the real dataset Flickr30K [27].
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Figure 5. Comparison of the discovered biases on generated images from StyleGAN3 [9] and real images from FFHQ [8].

SD-XL

Person gender

SD-2 SD-1.5

Figure 6. Comparison on images generated with the same caption “A traffic officer leaning on a no turn sign”.



SD-XL

Person race

SD-2 SD-1.5

Figure 7. “A man riding an elephant into some water of a creek”.

SD-XL

Person age

SD-2 SD-1.5

Figure 8. “A woman riding a horse in front of a car next to a fence”.

SD-XL

Child gender

SD-2 SD-1.5

Figure 9. “Toddler in a baseball cap on a wooden bench”.



SD-XL

Child race

SD-2 SD-1.5

Figure 10. “Small child hurrying toward a bus on a dirt road”.

SD-XL

Person attire

SD-2 SD-1.5

Figure 11. “The lady is sitting on the bench holding her handbag”.

SD-XL

Train color

SD-2 SD-1.5

Figure 12. “A train zips down the railway in the sun”.



SD-XL

Laptop brand

SD-2 SD-1.5

Figure 13. “A photo of a person on a laptop in a coffee shop”.

SD-XL

Horse breed

SD-2 SD-1.5

Figure 14. “A woman riding a horse in front of a car next to a fence”.

SD-XL

Bed type

SD-2 SD-1.5

Figure 15. “A person standing in a bedroom with a bed and a table”.



SD-XL

Cake type

SD-2 SD-1.5

Figure 16. “A close-up of a person cutting a piece of cake”.

SD-XL

Wave size

SD-2 SD-1.5

Figure 17. “A man rides a wave on a surfboard”.
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