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A. Implementation Details
Feature embedding. This module comprises eight sub-
modules to process eight components of the input data in-
dependently. Each sub-module consists of a few shallow
multilayer perceptions (MLPs) to process rotation, angu-
lar velocity, position, linear velocity, and acceleration, re-
spectively. Each MLP is a single Linear layer followed by
LeakyReLU. The outputs of the MLPs within each sub-
module are concatenated to form a vector of size 256.
Lightweight TSFL. This module consists of two identical
blocks, and each block has two sub-blocks: an LSTM-based
block to learn temporal information and a Transformer-
based block to encode spatial information. For each com-
ponent of the input data, we use a separate unidirectional
single-layer LSTM with a hidden size of 256 to encode
the historical information. The LSTM networks are or-
thogonally initialized. To learn how different components
are spatially correlated to each other, we adopt a 3-layer
Transformer encoder with 8 attention heads and a feed-
forward hidden size of 256 to process the outputs of LSTMs
at each time step. The Transformer encoder itself can han-
dle the scalable inputs via masks.
Regression heads. There are two regression heads that
regress the local pose parameters and the shape parameters
of SMPL [5] respectively. Both are MLP networks, and
each MLP network consists of a Linear layer, LeakyReLU
activation, and another Linear layer. We represent the joint
orientations by the 6D reparametrization due to its simplic-
ity and continuity [10]. Therefore, the output feature di-
mension of the pose regression head is 22 × 6 = 132. The
output feature dimension of the shape regression head is set
to 16. The intermediate dimension between the two Linear
layers is set to 256.

B. Additional Quantitative Comparisons
As mentioned in the main paper, we consider three in-
put scenarios in this paper, including (a) HMD, (b)
HMD+2IMUs, and (c) HMD+3IMUs. In this section,
we conduct extra experiments on each separate scenario.
Meanwhile, to better demonstrate the superiority of our

method, we also train a variant of the existing approaches,
denoted as † in the following tables, by adding a shape re-
gression head to their original model and introducing the
joint position loss in the model training. All the experi-
ments are also conducted on the AMASS dataset [6] with
two different protocols.

B.1. HMD Scenario

In this scenario, we can fairly compare our method with
state-of-the-art human motion tracking methods in the
HMD setting, such as AvatarPoser [3], AGRoL [2], and
AvatarJLM [9]. We re-train these methods with their public
source code and the ground truth body shape parameters.
As shown in Tab. A, HMD-Poser is not only more accurate
(lower MPJRE and MPJPE) but also generates smoother
human motions (lower Jitter) than all previous methods
(without †) on both protocol1 and protocol2. It validates
that HMD-Poser achieves a new state-of-the-art on the
AMASS dataset. By comparing HMD-Poser with the vari-
ants of previous methods, HMD-Poser has similar tracking
accuracy to AvatarJLM† [9] on protocol2 but is significantly
better than other methods on all protocols. Meanwhile,
HMD-Poser is significantly better than AvatarJLM† [9] in
inference speed, i.e., 205.7Hz vs 1.9Hz, as shown in the
main paper.

B.2. HMD+2IMUs Scenario

To the best of our knowledge, there is no available method
for comparison in this scenario. We make a minor adjust-
ment to the existing methods [2, 3, 9] in the HMD setting
by adding the IMU tracking signals to their input data and
extending the dimension of their feature embedding layer.
Following [7, 8], we adopt synthesized IMU data on the
AMASS dataset. Detailed results are presented in Tab. B.
Comparing the results in Tab. A and Tab. B, it can be con-
cluded that the tracking accuracy, especially for the lower
body, is significantly improved by adding the IMU signals
from the lower legs. It demonstrates the effectiveness of
our method by combining HMD with IMUs. On protocol1,
HMD-Poser surpasses all existing methods including their
variants in all metrics. On protocol2, HMD-Poser obtains
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Dataset Method MPJRE↓ MPJPE↓ MPJVE↓ Jitter↓ H-PE↓ U-PE↓ L-PE↓ R-PE↓

Protocol 1

AvatarPoser [3] 2.94 5.84 26.60 13.97 4.58 3.24 9.59 5.05
AvatarPoser† [3] 2.94 5.17 27.17 14.45 3.64 2.71 8.73 4.39
AGRoL [2] 2.70 5.73 19.08 7.65 4.29 3.16 9.44 5.15
AGRoL† [2] 3.32 6.58 23.81 11.45 4.32 3.38 11.20 5.77
AvatarJLM [9] 2.81 5.03 20.91 6.94 2.01 3.00 7.96 4.58
AvatarJLM† [9] 2.56 3.89 20.91 7.46 1.60 2.01 6.62 3.32
HMD-Poser(Ours) 2.28 3.19 17.47 6.07 1.65 1.67 5.40 3.02

Protocol 2

AvatarPoser [3] 4.68 6.62 33.16 10.79 3.93 2.97 11.89 5.30
AvatarPoser† [3] 4.64 6.63 33.54 10.77 3.30 2.81 12.14 5.42
AGRoL [2] 4.38 6.74 24.14 6.33 3.53 3.02 12.11 5.86
AGRoL† [2] 4.82 8.17 33.82 15.75 5.69 3.75 14.56 6.63
AvatarJLM [9] 4.45 5.96 27.50 6.91 2.30 2.97 10.28 5.22
AvatarJLM† [9] 4.28 5.43 27.14 6.89 1.88 2.32 9.93 4.67
HMD-Poser(Ours) 4.27 5.44 30.15 5.62 2.56 2.44 9.77 4.83

Table A. Evaluation results in the HMD scenario. We retrain existing approaches with their public source code and the ground truth body
shape parameters. † denotes a variation of the existing models by adding a shape regression head to their original model and introducing
the joint position loss in the model training. The best results are in bold.

Dataset Method MPJRE↓ MPJPE↓ MPJVE↓ Jitter↓ H-PE↓ U-PE↓ L-PE↓ R-PE↓

Protocol 1

AvatarPoser [3] 2.51 4.99 22.02 11.16 4.58 3.22 7.53 4.98
AvatarPoser† [3] 2.52 4.24 23.17 12.09 3.69 2.68 6.49 4.23
AGRoL [2] 2.25 4.81 15.13 8.44 4.25 3.09 7.28 4.95
AGRoL† [2] 2.76 5.25 16.17 7.98 5.20 3.48 7.82 5.39
AvatarJLM [9] 2.38 4.24 18.72 7.39 2.00 2.90 6.16 4.34
AvatarJLM† [9] 2.12 2.95 18.78 7.53 1.48 1.89 4.48 3.06
HMD-Poser(Ours) 1.83 2.27 13.28 5.96 1.39 1.51 3.35 2.74

Protocol 2

AvatarPoser [3] 3.87 4.58 25.98 9.75 3.74 2.88 7.03 4.99
AvatarPoser† [3] 3.90 4.70 26.76 10.08 3.10 2.77 7.49 5.29
AGRoL [2] 3.64 4.69 17.22 7.46 3.54 2.95 7.20 5.40
AGRoL† [2] 4.00 5.63 23.37 14.53 3.95 3.32 8.98 6.78
AvatarJLM [9] 3.89 4.49 22.64 6.34 2.21 2.89 6.41 4.84
AvatarJLM† [9] 3.77 3.69 22.25 6.04 1.78 2.20 5.83 4.38
HMD-Poser(Ours) 3.66 3.68 20.29 6.22 1.65 2.14 5.92 4.51

Table B. Evaluation results in the HMD+2IMUs scenario. Note that all previous methods are modified in this scenario by adding the IMU
tracking signals to their input data and extending the dimension of their feature embedding layer.

the lowest position error and Jitter among all methods, but
slightly higher MPJRE and MPJVE than AGRoL [2].

B.3. HMD+3IMUs Scenario

In this scenario, the input setting is closest to that of 6IMUs-
based tracking methods. Therefore, we compare our HMD-
Poser in the HMD+3IMUs scenario with state-of-the-art
methods in this category, i.e., Transpose [7] and PIP [8].
For a fair comparison, we add the global positions of the
headset and hand controllers to the input data of the base-
lines [7, 8]. The results are summarized in Tab. C. In this
scenario, our HMD-Poser can surpass all previous methods

in all metrics on both protocol1 and protocol2. Comparing
the results in Tab. B and Tab. C, the tracking accuracy of
HMD-Poser is further improved which validates the effec-
tiveness of adding IMU to the pelvis.

C. Additional Ablation Studies

Effect of the model size. The number of blocks N in the
lightweight TSFL network is a key hyper-parameter in our
HMD-Poser. As shown in Tab. D, we see a clear down-
ward tendency for both MPJPE and Jitter when increasing
N from 1 to 2. However, this tendency becomes less pro-
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Dataset Method MPJRE↓ MPJPE↓ MPJVE↓ Jitter↓ H-PE↓ U-PE↓ L-PE↓ R-PE↓

Protocol 1

Transpose [7] 3.05 4.57 22.41 7.98 3.83 3.05 6.76 4.62
TransPose† [7] 3.02 3.99 23.32 8.65 3.58 2.72 5.82 4.23
PIP [8] 2.45 4.54 19.02 8.13 4.54 3.15 6.53 4.54
PIP† [8] 2.31 2.84 17.43 6.99 3.00 2.16 3.82 2.86
HMD-Poser(Ours) 1.73 1.89 11.03 5.35 1.27 1.46 2.46 2.37

Protocol 2

Transpose [7] 4.31 5.29 28.18 5.16 7.38 3.86 7.36 4.80
Transpose† [7] 3.94 4.73 29.11 6.02 5.60 3.42 6.61 4.57
PIP [8] 3.61 4.16 22.22 6.89 4.28 2.97 5.89 4.30
PIP† [8] 3.80 4.21 26.55 7.54 4.97 3.04 5.90 4.28
HMD-Poser(Ours) 3.49 3.13 16.17 4.93 1.81 2.17 4.51 3.88

Table C. Evaluation results in the HMD+3IMUs scenario. For a fair comparison, we also add head and hand positions to the input data of
all baseline methods.
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Figure A. Setup for real-data collection with HMD + 2IMUs.

nounced as N continues to increase. Hence, we use N = 2
in our final configuration which could obtain satisfactory
results in both tracking accuracy and inference speed.
Effect of each loss term. As shown in the main paper,
HMD-Poser is trained with five different loss terms. Among
these loss terms, Lori, Llrot and Ljoint are essential terms
for model training. We illustrate the contributions of the left
two loss terms, i.e., Lgrot and Lsmooth, in a leave-one-term-
out manner. As shown in Tab. E, the smooth loss Lsmooth

has a positive impact on reducing the MPJVE and Jitter as
expected. The global pose loss Lgrot reduces the MPJPE
and H-PE, which may be attributed to its role in reducing
the accumulating error of pose estimation along the kine-
matic chain.

D. Real-Captured Data

To investigate the model’s performance gap between syn-
thetic data and real-captured sensor data and evaluate our
HMD-Poser’s performance running on HMDs, we built an
additional dataset of real-captured data with HMD+2IMUs.
As shown in Fig. A, each subject wears PICO 4 (includ-
ing HMD and two hand controllers) and 2 PICO motion
trackers on his/her lower legs and dances freely with music.
Meanwhile, we use a synchronized marker-based motion
capture system, OptiTrack [1], to track body markers and
attain ground-truth SMPL parameters using Mosh++ [4].
A total of 74 free-dancing motions from 8 subjects are
recorded. The duration of each motion sequence is set to
120 seconds. We will release this dataset for research soon.
Calibration. Since the raw IMU measurements are in the
sensor-local coordinate system, we need to transform the
raw IMU data into the same coordinate frame, which is re-
ferred to as calibration. Although we have specified the
rough wear positions of IMU sensors, i.e., the pelvis, and
the left and right lower legs, there could still be differences
in the precise wear position and orientation of each sub-
ject. Our calibration method could automatically compute
the transition matrices for each IMU sensor by requiring the
subject to perform three specified actions: (1) stand straight
for more than 5 seconds, (2) bend the knees forward and
hold for 5 seconds, (3) lift the left and right legs in sequence.
Synchronization. Since we jointly capture ground-truth
motions and the sensor data of HMD and IMUs with sep-
arate devices, our records must be accurately synchronized
in the absence of a genlock signal. To this end, we add a
rigid body on top of the HMD headset, as shown in Fig. A.
Subjects are asked to perform simple control movements at
the beginning of each capture motion, consisting of turn-
ing their heads clockwise and counterclockwise, nodding,
and shaking their heads. This enables matching the orienta-
tions measured by IMUs on the HMD device with the rigid
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Method MPJRE↓ MPJPE↓ MPJVE↓ Jitter↓ H-PE↓ U-PE↓ L-PE↓ R-PE↓
N = 1 2.40 3.31 22.85 11.77 1.74 1.75 5.58 3.09
N = 2 2.28 3.19 17.47 6.07 1.65 1.67 5.40 3.02
N = 3 2.28 3.18 16.97 5.20 1.60 1.66 5.38 3.06

Table D. Evaluating the effect of the number of blocks N in the lightweight TSFL network.

Method MPJRE↓ MPJPE↓ MPJVE↓ Jitter↓ H-PE↓ U-PE↓ L-PE↓ R-PE↓
w/o Lgrot 2.29 3.25 17.76 6.06 1.86 1.74 5.41 3.08
w/o Lsmooth 2.27 3.16 17.89 6.71 1.69 1.68 5.30 3.00
with all loss terms 2.28 3.19 17.47 6.07 1.65 1.67 5.40 3.02

Table E. Evaluating the effect of each loss term.

body orientations measured by OptiTrack. The frame rates
of OptiTrack (120Hz) and IMUs (500Hz) are sufficiently
high and the synchronization error is negligible.
Downsampling. Our HMD-Poser can reach a frequency of
90.0Hz on PICO 4 HMD. To align with the setup in training,
we set the FPS of our HMD-Poser to a fixed frequency of
60Hz on HMD devices. Hence, we also downsample the
ground-truth motions from 120Hz to 60Hz.
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