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In this document, we provide additional details concerning
the main paper.

6. Problem formulation — additional details
Although the depth equations (4) described in Sec. 2.1 are
the main constraints used in our approach, we wish to point
out that they are by no means the only polynomial equa-
tions involving depths λip, image points xip and the cali-
bration matrix K that must be satisfied by an exact solution
((λip),K). In the language of Sec. 11.1: the depth con-
straints determine the variety of problem-solution pairs X
locally but not globally.

We may derive additional constraints as follows: us-
ing (1), for any view pair 1 ≤ i < j ≤ M and four distinct
world points with indices 1 ≤ p1, . . . , p4 ≤ 4, we have
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This follows from our assumption that K, and hence also
det(K), is constant: compare with (19) below.

It is important to remember that, when solving with a
minimal relaxation, the equations that are not enforced may
or may not continue to hold for noisy data. As an example
of this, we may consider the unique class of minimal prob-
lems in Table 1 for the scenario 11000 with M = 3 fully
calibrated views. As illustrated in Fig. 5, we may drop ex-
actly one depth equation for the view pair (i, j) = (1, 2) to
obtain a representative for the equivalence class of minimal
relaxations. This relaxation has the effect that (9) no longer
must hold for this view pair. Indeed, we find that this equa-
tion is typically violated in the case of noisy data and for
all 639 non-synthetic solutions when solving a generic syn-
thetic problem instance. On the other hand, for the view pair
(i, j) = (1, 3), the equation (9) holds even for non-synthetic
solutions or noisy data.

We may rephrase the observations of the previous para-
graph in the geometric language developed in Sec. 3 (see
also SM 9 below.) From this point of view, (9) is valid for

both view pairs on the incidence variety X associated with
the overconstrained problem but only generally valid for the
view pair (1, 3) on the incidence variety V(g) associated
to the minimal relaxation. The local nature of parameter
homotopy ensures, for this problem, that we do not need
to explicitly enforce the constraint (9) for one view pair.
However, any attempt to simultaneously enforce these con-
straints for both view pairs and the chosen depth constraints
will invariably lead us back to an overconstrained problem.

7. Normalization of known intrinsics
Referring to Sec. 2.2, we provide details on transforming
image coordinates to normalize the value of known intrinsic
parameters. Without loss of generality, for Ri = I3 and
Ci = 0, Eq. (1) writes

λip xip =
(
K | 0

)(Xp

1

)
, i ∈ [M ], p ∈ [N ] . (10)

If Xp = (α β γ)
⊤, then λip = γ, and

xip =

 xip,1

xip,2

1

 =

 fa+ sb+ u

gb+ v

1

 , a =
α

γ
, b =

β

γ
. (11)

Additionally, we present the well-known decomposition
of K into scaling, shear, and translation transformations ap-

Figure 5. Visualization of a representative of the equivalence class
of minimal relaxations for the 11000 problem obtained by drop-
ping a constraint d1,2,pq for view pair (1, 2).
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Prior on K M N L Min # sol. in C Max # sol. in C #balanced #g Prior on K M N L Min # sol. in C Max # sol. in C #balanced #g

fguvs 2 - 0 ∞ ∞ 0 0 1g0vs 2 - 2 ∞ ∞ 0 0
fguvs 3 6 0 11940∗ 4544808∗ 5852925 3313 1g0vs 3 5 2 58024 631306 1140 8

fguv0 2 - 1 ∞ ∞ 0 0 1g0v0 2 7 3 36 36 1 1
fguv0 3 5 1 9252 9252 190 3 1g0v0 3 5 3 8800 205568 4845 37

fgu0s 2 - 1 ∞ ∞ 0 0 1g00s 2 7 3 48 48 1 1
fgu0s 3 5 1 8232 8232 190 3 1g00s 3 5 3 8960 477088 4845 37

fgu00 2 - 2 ∞ ∞ 0 0 1g000 2 6 4 60 60 1 1
fgu00 3 5 2 38744 134424 1140 8 1g000 3 4 4 1336 1336 1 1

fg0vs 2 - 1 ∞ ∞ 0 0 11uvs 2 - 2 ∞ ∞ 0 0
fg0vs 3 5 1 8232 8232 190 3 11uvs 3 5 2 57912 201265 1140 8

fg0v0 2 - 2 ∞ ∞ 0 0 11uv0 2 7 3 48 48 1 1
fg0v0 3 5 2 38744 450080 1140 8 11uv0 3 5 3 8940 477080 4845 37

fg00s 2 - 2 ∞ ∞ 0 0 11u0s 2 7 3 36 36 1 1
fg00s 3 5 2 38744 134424 1140 8 11u0s 3 5 3 8786 46192 4845 37

fg000 2 7 3 72 72 1 1 11u00 2 6 4 60 60 1 1
fg000 3 5 3 15536 830656 4845 37 11u00 3 4 4 1336 1336 1 1

f1uvs 2 - 2 ∞ ∞ 0 0 110vs 2 7 3 72 72 1 1
f1uvs 3 5 2 8222 8222 190 3 110vs 3 5 3 16390 85480 4845 37

f1uv0 2 - 2 ∞ ∞ 0 0 110v0 2 6 4 60 60 1 1
f1uv0 3 5 2 58088 201632 1140 8 110v0 3 4 4 1336 1336 1 1

f1u0s 2 - 2 ∞ ∞ 1 1 1100s 2 6 4 60 60 1 1
f1u0s 3 5 2 29520 320380 1140 8 1100s 3 4 4 1336 1336 1 1

f1u00 2 7 3 36 36 1 1 11000 2 5 5 20 20 1 1
f1u00 3 5 3 8800 489088 4845 37 11000 3 4 5 640 640 1 1

f10vs 2 - 2 ∞ ∞ 0 0 ffuvs 2 - 1 ∞ ∞ 0 0
f10vs 3 5 2 48664 173078 1140 8 ffuvs 3 5 1 9234 9234 190 3

f10v0 2 7 3 72 72 1 1 ffuv0 2 - 2 ∞ ∞ 0 0
f10v0 3 5 3 15528 114440 4845 37 ffuv0 3 5 2 32376 238238 1140 8

f100s 2 7 3 36 36 1 1 ffu0s 2 - 2 ∞ ∞ 0 0
f100s 3 5 3 8784 205556 4845 37 ffu0s 3 5 2 58056 201516 1140 8

f1000 2 6 4 60 60 1 1 ffu00 2 7 3 48 48 1 1
f1000 3 4 4 1336 1336 1 1 ffu00 3 5 3 8968 353984 4845 37

1guvs 2 - 1 ∞ ∞ 0 0 ff0vs 2 - 2 ∞ ∞ 0 0
1guvs 3 5 1 8720 8720 190 3 ff0vs 3 5 2 77400 268704 1140 8

1guv0 2 - 2 ∞ ∞ 0 0 ff0v0 2 7 3 48 48 1 1
1guv0 3 5 2 58092 201616 1140 8 ff0v0 3 5 3 8968 184672 4845 37

1gu0s 2 - 2 ∞ ∞ 0 0 ff00s 2 7 3 72 72 1 1
1gu0s 3 5 2 58048 201436 1140 8 ff00s 3 5 3 15512 792084 4845 37

1gu00 2 7 3 72 72 1 1 ff000 2 6 4 60 60 1 1
1gu00 3 5 3 15520 86630 4845 37 ff000 3 4 4 1336 1336 1 1

Table 4. 80 classes of minimal autocalibration problems for M ∈ {2, 3} views. Solution counts refer to unknown depths and the
unknown enries of K in (18). Other notation and conventoions are the same as in Table 1.

plied to normalized image coordinates, which we will ref-
erence in later sections:

K =

 1 0 u

0 1 v

0 0 1


︸ ︷︷ ︸

Translation

 1 s/g 0

0 1 0

0 0 1


︸ ︷︷ ︸

Shear

 f 0 0

0 g 0

0 0 1


︸ ︷︷ ︸

Scaling

. (12)

7.1. Known Focal Lengths

Normalization of known focal lengths involves reversing
the scaling transformation in (12) along the x and/or y axes.
When f is known, xip may be transformed into normalized
coordinates x̃ip in which f = 1,

x̃ip =

 a+ s̃b+ ũ

gb+ v

1

 , s̃ =
s

f
, ũ =

u

f
. (13)

Then, we may solve for the unknown transformed intrinsics
(g, ũ, v, s̃) and recover the original values of u, s using the
known value of f . Similarly, when g is known, we use

x̃ip =

 fa+ sb+ u

b+ ṽ

1

 , ṽ =
v

g
, (14)

we solve for the unknown transformed intrinsics (f, u, ṽ, s),
and recover the original value of v.

7.2. Known Principal Point

Normalizing known principal point coordinates involves re-
versing the translation transformation in (12) to center im-
age coordinates at the origin.

When u is known, normalizing the known value of u to
u = 0 involves subtracting u from xip,1, the first coordinate
of xip. Notably, no additional substitution of other intrinsic
parameters is necessary. Similarly, when v is known, nor-
malizing the known value of v to v = 0 may be achieved by
subtracting v from the second coordinate xip,2.

7.3. Known Skew

Knowing the camera skew, when it is nonzero, implies
knowledge of the shear transformation embedded in K, and
that is applied to the normalized image coordinates.

The shear transformation in (12) is determined by s⋆ =
s
g . Thus, when s⋆ is known, the skew-induced shear in im-
age coordinates may be removed by transforming xip,1, the
first coordinate of xip, as follows:

x̃ip,1 = xip,1 − s⋆xip,2 . (15)



Importantly, (15) successfully reverses the shear transfor-
mation when either v = 0 or when v is known and xip is
first normalized to fix v = 0, as detailed in Sec. 7.2. This
can be observed by rewriting xip from (11) as follows:

x̃ip =

 x̃ip,1

x̃ip,2

1

 =

 fa+ s⋆xip,2 + u− s⋆v

gb+ v

1

 , (16)

by substituting b = (xip,2 − v)/g. Notably, no additional
substitution of other intrinsic parameters is necessary.

Our previous autocalibration specification can be ex-
tended to minimal problems in the notable case where a
generic s⋆ is known and nonzero, but v is unknown. Refer-
ring to 2.1, s⋆ appears explicitly in our parametrization of
ω, as defined in (2). Thus, referring to Sec. 3.3, given any
system g(p,x) = 0 encoding a minimal relaxation of an
autocalibration problem in which s⋆ is known and nonzero
and v is unknown, we may treat s⋆ ∈ p, as a parameter of
the system. Then, we may construct minimal solvers using a
standard online/offline parameter homotopy approach such
as described in Section 3.3. Referring to Sec. 2.2, we indi-
cate known nonzero s⋆ in the 5-tuple of unknowns fguvs
by setting s = s⋆. This notation is used in Tab. 5 to report
the solution count in C computed during the offline stage for
all cases where s⋆ is known and nonzero and v is unknown,
mirroring the comprehensive approach taken in Tab. 1.

8. Depth equations without symmetry removal
We discuss the effect of substituting (2) into di,j,pq on the
solution count in C for the 80 interesting minimal autocali-
bration problems presented in Tab. 1.

Without substituting (2), di,j,pq(λ,K;x) writes:

di,j,pq(λ,K;x) :=(K−1λipxip −K−1λiqxiq)
T

(K−1λipxip −K−1λiqxiq)

−(K−1λjpxjp −K−1λjqxjq)
T

(K−1λjpxjp −K−1λjqxjq), (17)

and we may write our main constraint as

di,j,pq(λ,K;x) = 0 . (18)

In Tab. 4, we list the same 80 interesting groups of prob-
lems indexed by (fguvs,M,N), mirroring Tab. 1 in the
main paper. Notably, we report the minimum and maxi-
mum solution count in C, referring to the unknown depths
and the parameters of K in (1)-(17).

9. Details on minimal relaxations
To illustrate some technicalities in our definition of minimal
relaxation, we consider again the irreducible variety

X = {(p1, p2, x) ∈ C3 | x2 − p1 = p2x
2 − 1 = 0}

Prior on K M N L Min # sol. in C
fguvs⋆ 2 - 1 ∞
fguvs⋆ 3 5 1 2313
fg0vs⋆ 2 - 2 ∞
fg0vs⋆ 3 5 2 19365
f1uvs⋆ 2 - 2 ∞
f1uvs⋆ 3 5 2 29044
f10vs⋆ 2 7 3 36
f10vs⋆ 3 5 3 8272
1guvs⋆ 2 - 2 ∞
1guvs⋆ 3 5 2 29046
1g0vs⋆ 2 7 3 36
1g0vs⋆ 3 5 3 8282
11uvs⋆ 2 - 3 48
11uvs⋆ 3 5 3 8940
110vs⋆ 2 6 4 60
110vs⋆ 3 4 4 1336
ffuvs⋆ 2 - 2 ∞
ffuvs⋆ 3 5 2 16188
ff0vs⋆ 2 7 3 24
ff0vs⋆ 3 5 3 4482

Table 5. Non-zero Skew Autocalibration Problems. Specifica-
tion of 20 notable minimal problems in 2 and 3 views (M) where
s⋆ = s

g
is known and non-zero and v is unknown. For each

triplet (fguvs,M,N), we report L, number of linear constraints
on K, and the minimum, taken over all minimal relaxations, so-
lution count in C for generic input (including s∗.) As in Table 1,
counts refer to unknown depths and the parameters of ω in (2)–(4).

depicted in Figure 2 of the main paper. The real-valued
points of X in R3 form the purple space curve where the
red and blue surfaces intersect below.

X
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In this example, we understand the vector (p1, p2) ∈ C2 to
represent a problem instance and x ∈ C one of its solutions.
The set of exactly solvable problems is the image of the pro-
jection map π : X → C2, namely the hyperbola p1p2 = 1
drawn in black. Then, the problem is overconstrained since
a generic problem instance will not lie on the hyperbola and
will have no solutions. This manifests in the failure of the
rank conditions (7) : for a generic problem-solution pair
(p1, p2, x) ∈ X , we have

rank

(
−1 0 2x

0 x2 −2p2x

)
̸= 1 ∀ (p1, p2, x) ∈ X\{(0, 0, 0)}.



Two minimal relaxations can be obtained by dropping one
of the two equations defining X . These relaxations corre-
spond to the surfaces X1 = Xx2−p1

and X2 = Xp2x2−1,
drawn above in red and blue, respectively. The union of
these two surfaces is not a minimal relaxation, since the Ja-
cobian of (x2 − p1)(p2x

2 − 1) vanishes identically along
X. For the rational function g(p1, p2, x) = 1/x2 − p2, note
that we also have V(g) = Xg = X2. If we instead con-
sider g′ = (p2x

2 − 1)x, the variety V(g′) has two irre-
ducible components, given by V(x) and the minimal relax-
ation Xg′ = Xg = X1. Finally, let us observe that in this
example, the degrees of the minimal relaxations Xi → C2

are both 2. This need not be the case in general: if we con-
sider instead of X the space curve V(x2 − p1, x

3 − p3), we
see there are minimal relaxations of degree 2 or 3. This ex-
ample also shows that relaxations can increase the number
of solutions, even for an exactly solvable problem instance.

We wish to point out that our notion of a minimal relax-
ation occurs implicitly in previous works [9, 27] studying
constraints involving calibrated trifocal tensors and point-
line minimal problems with partial visibility. Both works
consider a minimal relaxation of the overconstrained prob-
lem of estimating four points in three calibrated views. In
this minimal relaxation, one point in one view is replaced by
a line. Both of these works formulate the overconstrained
problem of estimating four points in three calibrated views
and consider the “Scranton” relaxation of this problem in
which only a single point-point-line constraint on the tri-
focal tensor is enforced for one of the point triplets. This
problem has 272 solutions. As observed in [24], Scran-
ton can also be formulated in terms of depths and an ex-
tra slack variable. The depth-formulated Scranton is not
a minimal relaxation in the sense defined above. In this
work, instead of adding variables, we drop equations. We
may simply drop the equation d1,2,12(λ, ω;x) = 0 in the
fully calibrated case. This gives a minimal relaxation with
640 = 2×320 solutions and a two-way symmetry that sends
λ2,p → −λ2,p and fixes all other variables. We remark that
a further systematic study of symmetries appearing in our
zoo of autocalibration problems, along the lines conducted
in [10], would be very interesting. However, this study lies
beyond the scope of this investigation.

HC methods for solving Kruppa’s equations may also be
understood in our framework of minimal relaxations. For
Kruppa, solutions x are the entries of 3×3 matrix represent-
ing the DIAC, and triples of fundamental matrices specify
parameters p. Moreover, for a synthetic problem-solution
pair (p0,x0) ∈ X used to initialize monodromy, certain
compatability conditions on fundamental matrices encoded
in p0 must be satisfied [20, §15.4].

10. Enumerating minimal problems —
additional details

Returning to the enumeration problem described in in Sec-
tion 3, we now discuss line graphs, a standard graph-
theoretic construction. The utility of this construction is
that the isomorphism class of a 4-coloring is completely de-
termined by an associated line graph L(c) after equipping
it with a suitable vertex labeling. The vertices of the line
graph L(c) are simply the non-white edges, and an edge be-
tween two vertices of L(c) exists whenever the two non-
white edges share a vertex between 1 and N . We label
each vertex pq ∈ L(c) by its color c(pq). Two isomorphic
graphs have isomorphic line graphs; conversely, a classical
theorem of Whitney [52] implies that two connected graphs
whose line graphs are isomorphic are themselves isomor-
phic, with the sole exception of the complete graph K3 and
the claw graph K1,3 (see eg. [18, Theorem 8.3].) Although
L(K3) ∼= L(K1,3), the original graphs K3 and K1,3 have
different numbers of edges. From this, it easily follows
that we can decide whether or not two 4-colorings c1, c2
are isomorphic: form the two graphs L(c1) and L(c2), de-
cide if there exists an isomorphism that respects their la-
belings, and repeat this same procedure for the two graphs
L(c1),L(c2 ◦ τ), where τ swaps green and red edges.

We implement software based on the NetworkX library
[35], and the VF2++ algorithm [25] to compute the isomor-
phism classes for all minimal problems listed in Tab. 1. The
code is implemented in Python and is publicly available at
github.com/andreadalcin/MinimalPerspectiveAutocalibration.

Tab. 6 provides a visualization of one represen-
tative 4-coloring for each isomorphism class for the
fguv0, fgu00, fg000 minimal problems in M = 3 views.
The isomorphism classes for fguvs are too many to be vi-
sualized in Tab. 6. Still, as part of our software, we provide
a visualization tool and instruction to visualize equivalence
classes for fguvs.

11. Experiments

We provide additional details on our experimental valida-
tion that were omitted from the main paper due to space
restrictions.

11.1. Choice of Minimal Relaxations

In case of different minimal relaxations yielding the same
minimum solution count, e.g., in fguv0, we selected that
yielding the lowest mean reprojection error in our synthetic
test described in Sec. 4.1. We noted that reprojection er-
ror fluctuations among different relaxations with identical
solution counts are always below 1%, suggesting compa-
rable numerical performance between different minimal re-
laxations with the same solution count.

https://github.com/andreadalcin/MinimalPerspectiveAutocalibration


(a) ffuv0 (b) fguv0 (c) fguvs

Figure 6. 4-colorings of the minimal relaxations used in our implementation of solvers for the ffuv0, fguv0 and fguvs problems.

Prior on K M N L Sol. in C for isomorphism class #g
fguv0 3 5 1 2313 2313 2313 3

fgu00 3 5 2 9686 9686 9686 9686 9686 33606 33606 33606 8

fg000 3 5 3 17624 17624 17624 3884 3884 3884 3884 19696 37

19696 19696 19696 19696 19696 21696 21696 21696

21696 21696 16356 28640 16948 29888 74056 76832

74480 31183 87328 17364 77816 31964 33262 88000

33884 171696 198032 193648 207664

Table 6. Visualization of Isomorphism Classes. Visualization of one representative 4-coloring for each isomorphism class of minimal
relaxations for autocalibration problems fguv0, fgu00, fg000 in M = 3 views. For each triplet (fguvs,M,N), we report one repre-
sentative 4-coloring for each isomorphism class and its associated solution count in C. Solution counts refer to unknown depths and the
parameters of ω in (2)–(4).

For the purposes of this work, we list the specific min-
imal relaxations used to implement the solvers ffuv0,
fguv0, and fguvs, which are used throughout our exper-
iments. Specifically, for each implemented solver, we spec-
ify the depth constraints that are omitted from the chosen
system of equations g:

• ffuv0: d1,2,45, d1,3,45, d1,2,35 (see Fig. 6a).
• fguv0: d1,2,45, d1,3,45 (see Fig. 6b).
• fguvs: d1,2,56, d1,3,56, d1,2,45, d1,3,45, d1,2,46, d1,2,36,
d1,2,26, d1,3,34 (see Fig. 6c).

Our public code also includes starting the parameters and
solutions for parameter homotopies used by each solver to
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Figure 7. Kruppa-7 Evaluation on Synthetic Images. Solver accuracy is assessed under varying levels of zero-mean Gaussian noise
(denoted by σ on the x-axis) applied to pixel coordinates. Mean reprojection error and relative errors in focal lengths ∆fg, principal
point ∆uv, and skew ∆s are reported. For error measures, boxes represent the interquartile range of error distribution. The right-most
plot illustrates the failure rate as a percentage, with fguv0, ffuvs, and fguvs excluded due to no failures. Results are averaged for 1000
synthetic image sequences. Synthetic camera parameters are set to mirror the configuration described in Sec. 4.1. Results are averaged
over 1000 synthetic image sequences.

ensure full reproducibility.

11.2. Computing Camera Rotations and Centers
from Projective Depths

We discuss the conversion of projective depths into camera
rotations and centers. Referring to Sec. 4, our autocalibra-
tion formulation allows us to perform an Euclidean recon-
struction. However, we obtain the projective depths associ-
ated with image points rather than camera roto-translations
and 3D point coordinates. However, recovering camera ro-
tations and centers is straightforward, assuming that, with-
out loss of generality, the i = 1 camera is at R1 = I and
C1 = 0.

Initially, we compute 3D points, denoted as Xip, for each
camera i ∈ [M ], using Xip = λipK

−1xip. Throughout
this section, we express Xip in Cartesian coordinates, i.e.,
Xip ∈ R3. Centering all 3D points by subtracting X11 (the
point p = 1 seen by the i = 1 camera), we extract transla-
tion components ti = Xi1 for i ∈ [2, . . . ,M ]. Subtracting
the translation component from the 3D points seen by the
i-th view (X̃ip = Xip − ti), we compute the rotation com-
ponent

Ri =
(
X̃i2 X̃i3 X̃i4

)(
X̃12 X̃13 X̃14

)−1

.

(19)
Finally, we compute the camera centers

Ci = λi2K
−1xi2 −Riλ12K

−1x12 , i ∈ [2, . . . ,M ] .
(20)

As discussed in Sec. 6, a given relaxation might remove
constraints that enforce the validity of the recovered rota-
tion matrices, i.e., Ri ∈ SO(3). If Ri is not an orthogonal
matrix, we compute an SVD Ri = USV ⊤ and the closest
orthogonal matrix R̃i = UV ⊤ (with respect to either the
Frobenius or spectral norm.)

This approach is consistently applied in our experimen-
tal validation, and we provide Julia code for the conversion

from projective depth to camera roto-translation.

11.3. Error Metrics

We provide complete error definitions for the error metrics
employed in our experimental evaluation within the main
paper. Referring to Sec. 4, we define the relative error ∆fg
in focal lengths as follows:

∆fg =
1

2

(
|f̂ − fgt|

fgt
+

|ĝ − ggt|
ggt

)
. (21)

The reprojection error Re is computed as

Re =
1

N(M − 1)

M∑
i=2

N∑
p=1

∥xip − x̂ip∥2 , (22)

where x̂ip denotes the projection of the p-th point onto the
i-th view using the estimated camera parameters:

x̂ip =
1

λ̂ip

K̂ R̂i

(
I | −Ĉi

)( λ̂1pK̂
−1x1p

1

)
, (23)

where K̂, R̂i, Ĉi, λ̂ip denote the estimated camera intrin-
sics, rotation, center, and projective depth of point p seen
by view i, respectively. The definition of the reprojection
error Regt is consistent with (22), but x̂ip is computed as:

x̂ip =
1

λ̂ip

K̂ Ri

(
I | −Ci

)( λ̂1pK̂
−1x1p

1

)
, (24)

where Ri, Ci are the ground truth camera rotation and cen-
ter, respectively.

In Sec. 4.2, the angular errors ϵR and ϵC for estimated
camera rotations and centers, respectively, are defined as
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Figure 8. Autocalibration Evaluation on Synthetic Images with Specialized Intrinsics. Solver accuracy is assessed under varying
levels of zero-mean Gaussian noise (denoted by σ on the x-axis) applied to pixel coordinates. Mean reprojection error and relative errors
in focal lengths ∆fg, principal point ∆uv, and skew ∆s are reported. For error measures, boxes represent the interquartile range of error
distribution. The right-most plot illustrates the failure rate as a percentage, with ffuv0, fguv0, and fguvs excluded due to no failures.
Synthetic camera parameters vary across solvers to match their prior camera knowledge. For fguv0 we set s = 0, and for ffuv0 we set
f = g = 330. Results are averaged over 1000 synthetic image sequences.

Fountain-P11 Rathaus KITTI-Depth

Variant ∆fg ↓ ∆uv ↓ Re Points3D ∆fg ↓ ∆uv ↓ Re Points3D ∆fg ↓ ∆uv ↓ Re Points3D

COLMAPguess 0.3350 0.0140 0.444 4848 0.0671 0.0812 0.624 847 0.6510 0.1360 0.810 210
COLMAPffuv0 0.0053 0.0281 0.238 5357 0.0215 0.0102 0.441 831 0.0698 0.0161 0.402 231
COLMAPfguv0 0.0058 0.0297 0.241 5356 0.0237 0.0111 0.450 823 0.0720 0.0185 0.409 231
COLMAPguess + K-BA 0.0012 0.0013 0.212 5296 0.0185 0.0607 0.435 868 0.3480 0.5072 0.547 232
COLMAPffuv0 + K-BA 0.0011 0.0012 0.212 5367 0.0165 0.0305 0.431 823 0.0691 0.1281 0.401 236
COLMAPfguv0 + K-BA 0.0011 0.0012 0.212 5367 0.0165 0.0307 0.432 823 0.0626 0.1773 0.404 236

COLMAPgt + K-BA 0.0013 0.0011 0.210 5368 0.0069 0.0291 0.430 794 0.0401 0.0553 0.398 237

Table 7. Comparing errors and numbers of registered points for autocalibration strategies in COLMAP.

follows:

ϵR =
1

M − 1

M∑
i=2

∣∣∣∣∣ arccos
(

tr(R⊤
i R̂i)− 1

2

) ∣∣∣∣∣ , (25)

ϵC =
1

M − 1

M∑
i=2

∣∣∣∣∣ arccos
(

C⊤
i Ĉi

∥Ci∥∥Ĉi∥

) ∣∣∣∣∣ , (26)

where R̂i, Ĉi denote the estimated rotation and camera cen-
ter, respectively, of the i-th camera with respect to the i = 1
camera, for which R1 = I and C1 = [0, 0, 0]. Ri, Ci de-
note the ground truth camera rotation and center, respec-
tively. The values of ϵR and ϵC are expressed in degrees for
all experiments.

11.4. Synthetic Experiments — additional details

We provide additional details regarding our synthetic eval-
uation, referring to Sec. 4.1 of the main paper.

Kruppa-7. Fig. 7 presents a comparative analysis of the
results achieved by the Kruppa-7 solver in relation to the
ffuv0, fguv0, fguvs, and Kruppa-8 solvers. Results
reveal that Kruppa-7 exhibits inferior accuracy in focal
length estimation (∆fg) compared to Kruppa-8, especially

at lower noise levels σ ≥ 0.6. Nonetheless, principal point
and skew estimation accuracy are comparable to Kruppa-8.
Finally, the failure rates of Kruppa-7 match or surpass those
of Kruppa-8 across all noise levels σ.

Evaluation with Specialized Intrinsics. Fig. 8 presents
the results of our ffuv0 and fguv0 solvers evaluated on
synthetic scenes generated using varying camera parame-
ters that depend on the prior camera knowledge assumed by
each solver. For fguvs, Kruppa-6, and Kruppa-8, which
do not assume any camera knowledge, synthetic camera pa-
rameters are set to f = 330, g = 310, u = 300, v = 250,
and s = 10. For fguv0, which assumes zero-skew, we set
s = 0. Finally, for ffuv0, which assumes squared pixel
aspect ratio, we set f = g = 330.

The results affirm that ffuv0 and fguv0 excel in focal
length estimation and achieve comparable performance to
the other solvers in principal point estimation. As expected,
errors ∆fg and ∆uv are reduced due to the synthetic cam-
era parameters perfectly matching the prior knowledge as-
sumed by each of these solvers.

This evaluation also focuses on evaluating the theoreti-
cal correctness of our solvers, i.e., verifying that zero error
is achieved in the noiseless case. Both ffuv0 and fguv0 at-



tain zero errors when δ = 0 and their assumed prior knowl-
edge matches the ground truth camera parameters, confirm-
ing their theoretical correctness. As expected, our solvers
do not exhibit any failures in this synthetic evaluation.

Degeneracies. As discussed in Sec. 4.1, our proposed
autocalibration solvers are unaffected by the degeneracy
of Kruppa-based methods arising from a singularity in the
Kruppa equations when the optical centers of cameras lie
on a sphere, and their optical axes intersect at the sphere’s
center [49]. To verify that our solvers overcome this sub-
stantial problem, we synthetically reproduce the aforemen-
tioned degeneracy condition and assess calibration on these
generated image sequences. We generate 1000 synthetic
scenes that exhibit the degeneracy condition of Kruppa and
verify our ffuv0, fguv0 and fguvs can successfully per-
form autocalibration in all cases, exhibiting zero-error in the
noiseless case and a failure rate of 0%.

Furthermore, referring to Sec. 3.3, we confirm the well-
posed nature of our autocalibration problem by verifying
that the Jacobian of the given relaxed system g(p,x) = 0
is full-rank at the synthetic solution (p0,x0). Additionally,
we observe that the least singular value of the Jacobian of
the system never falls below 10−4 in our testing. This indi-
cates the robust numerical stability of our solvers.

We implement code to generate degenerate image
sequences for Kruppa equations and verify that our
solvers are unaffected by this problem. The code
is implemented in Julia and is publicly available at
github.com/andreadalcin/MinimalPerspectiveAutocalibration.

11.5. Autocalibration in COLMAP —
additional details

Finally, we provide further details on evaluating the
COLMAP integration of our autocalibration solvers.

Datasets. For Fountain-P11 [47], we consider the 0-2-4
and 0-3-6 image triplets. Rathaus [47] includes a single cal-
ibrated image triplet. For KITTI-Depth [16], we extract im-
age triplets from the 2011-09-26-drive-0005 sequence.

Results. Tab. 7 provides an extended view of Tab. 3, in-
cluding the results achieved by COLMAPffuv0 — the ini-
tialization strategy of K based on the ffuv0 solver. This
variant excludes K from Bundle Adjustment (BA), and we
present results achieved by COLMAPffuv0 when BA is ap-
plied to K. The calibration accuracy of COLMAPffuv0

surpasses that of COLMAPfguv0 marginally, particularly in
terms of principal point estimation (∆uv). When Bun-
dle Adjustment is extended to K, the disparity in per-
formance diminishes and becomes negligible, especially
in the Fountain-P11 and Rathaus datasets. Notably, in
KITTI-Depth, extending Bundle Adjustment to K shows
that COLMAPffuv0 achieves a slightly lower accuracy in

focal lengths (∆fg) but exhibits improved accuracy in the
principal point (∆uv).

Discussion. In the context of integrating our autocalibra-
tion solvers into COLMAP, both ffuv0 and fguv0 demon-
strate similar accuracy in both ∆fg and ∆uv, particularly
when extending Bundle Adjustment to K. Consequently,
opting for fguv0 as an initialization strategy in COLMAP
is preferable for many practical applications. This prefer-
ence is attributed to the faster processing speed of fguv0
over ffuv0 (1.78 s/iter compared to 9.21 s/iter) and its sup-
port for cameras without square pixel aspect ratio.

https://github.com/andreadalcin/MinimalPerspectiveAutocalibration
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[32] Yi Ma, René Vidal, Jana Kosecka, and Shankar Sastry.
Kruppa equation revisited: Its renormalization and degener-
acy. In David Vernon, editor, Computer Vision - ECCV 2000,
6th European Conference on Computer Vision, Dublin, Ire-
land, June 26 - July 1, 2000, Proceedings, Part II, volume
1843 of Lecture Notes in Computer Science, pages 561–577.
Springer, 2000. 2

[33] Evgeniy V. Martyushev. A minimal six-point auto-
calibration algorithm. http://arxiv.org/abs/1307.3759, 2013.
1, 2

[34] Stephen J. Maybank and Olivier D. Faugeras. A theory of
self-calibration of a moving camera. Int. J. Comput. Vis.,
8(2):123–151, 1992. 1, 2

[35] NetworkX Developers. NetworkX, 2023. Accessed: Novem-
ber 24, 2023. 4

[36] Danda Pani Paudel and Luc Van Gool. Sampling algebraic
varieties for robust camera autocalibration. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 265–281, 2018. 1, 2, 6, 7, 8

[37] Marc Pollefeys, Luc Van Gool, and André Oosterlinck. The
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