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Supplementary Material

S.1. Overview

In this appendix we include our supplementary material as
follows:
• Additional comparisons with GAN-based and Diffusion-

based editing methods in Sec. S.2.
• Re-scoring analysis for car domain in Sec. S.3.
• Compositional editing results in Sec. S.4.
• Edit interpolation results in Sec. S.5.
• Ablation studies in Sec. S.6.

S.2. Additional Comparisons

S.2.1. GAN-based Editing Methods

GAN-based editing methods are known to have superior
editing capability due to their disentangled latent space [8].
In our analysis, we also include a comparison of NoiseCLR
with several state-of-the-art GAN-based methods that find
directions in the latent space in an unsupervised manner,
LatentCLR [9], GANSpace [2], and SeFa [6] (see Fig. S.1).
As can ben seen from the figure, our diffusion-based edits
achieves competitive results when compared with its GAN-
based counterparts.

S.2.2. Diffusion-based Editing Methods

In this section, we provide additional results across other
methods using qualitative and quantitative comparisons.

S.2.3. Qualitative Comparisons

• Diffusion-Pullback [5] proposes an unsupervised direc-
tion discovery method in diffusion-based models. Their
approach utilizes the pullback metric to identify latent
bases for image editing and optionally incorporates text
prompts. While they achieved promising results with
DDPM-based models (note that this needs a separate
DDPM model for each domain such as face, cats, and so
on), they report that their application to Stable Diffusion
didn’t fully realize its potential. Specifically, their method
uncovered only a limited number of directions in Stable
Diffusion, e.g. only two reported for face edits in their
paper. They noted that some of the latent vectors they
discovered led to sudden and drastic changes during the
editing process. This issue was attributed to the complex
geometry of the latent space, which poses a challenge for
achieving smooth and seamless edits.
In their study, only two editing directions called ‘over-
weight’ and ‘gender’ were initially reported. For a fair

comparison, we used the same input image from their pa-
per and created edited results for these directions using
our method. Additionally, we run their source code to
discover two more directions, ‘Old’ and ‘Race’, and re-
ported the results. Please refer to Fig. S.2.
The comparisons demonstrate that our method not only
executes edits more faithfully compared to [5], but it also
uncovers a significantly greater number of directions.

• Concept sliders [1], a concurrent work with ours, either
rely on text prompts or paired image data for editing im-
ages. For instance, to edit eyebrow shape of a face im-
age, one would need a text prompt like ‘eyebrows’ or a
pair of images showing the person before and after their
eyebrow shape changes. This reliance on text prompts or
paired data for defining edits aligns them with supervised
methods in image editing.
Please see Fig. S.3 for a comparison of their edits (found
via providing text prompts defining the edits) vs. ours
(found via unsupervised discovery). Although Concept
Sliders are capable of accomplishing the intended edit to
some degree, our method stands out by remaining more
faithful to the original input image and ensuring the ed-
its are disentangled. For instance, Concept Sliders often
alter the facial shape (as observed in the Race edit) and
mix changes in the face with aging in the mustache edit,
leading to entangled edits.

• Prompt2Prompt [3] is an image editing method that
uses cross-attention, and requires both a source and tar-
get text prompt. We compare our editing results with
Prompt2Prompt in Fig. S.3. Note that since their method
does not discover a direction, they are only able to per-
form a single edit and do not have the ability to control the
scale of the edit applied to the image, which limits their
usage. On the other hand, the requirement of a source
prompt poses another limitation, which might not be fea-
sible in domains such as art. Nevertheless, our results
show that our method is able to perform the desired edits
in a much more disentangled way while being faithful to
the input image. Notice that Prompt2Prompt (P2P) tends
to significantly modify the original image, deviating con-
siderably from the initial input as can be seen from Age
edit (Fig. S.3 bottom left) or performs unrealistic edits as
in Mustache edit (Fig. S.3 top right).

• DiffusionDisentanglement Note that although we in-
tended to compare our results with those from Wu et al.
[7], an editing method that optimizes weights to perform
disentangled edits given a text prompt, we were unable to
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Figure S.1. Comparisons with GAN-based Latent Discovery Methods. We also compare NoiseCLR with latent direction discovery
methods on GANs. As it is also demonstrated in our results, our editing & direction discovery method produces competitive results with
GAN-based methods, in terms of fine-grained face editing.

do so due to the high GPU requirements of their method
(namely, 48GB for a single edit). 1

Method Race Mustache Age Gender
Prompt2Prompt 0.24 0.22 0.28 0.25
Concept Sliders 0.18 0.13 0.21 0.25
Ours 0.15 0.12 0.18 0.21

Table S.1. LPIPS [10] metric which measures how well the sim-
ilarity to the original image distribution is maintained (lower is
the better). Our method is able to achieve lower LPIPS than the
other methods, indicating greater consistency with the input image
while performing the edits.

S.2.4. Quantitative Comparisons

We also compared Concept Sliders [1] and Prompt2Prompt
[3] methods in a quantitative way using LPIPS [10] met-
ric which measures how well the similarity to the original
image distribution is maintained. Table S.1 shows the re-
sults for Race, Mustache, Age, Gender edits. As can be seen
from the LPIPS metrics, our method is able to achieve lower
LPIPS than the other methods, indicating greater coherence
while performing the edits.

S.3. Re-scoring Analysis on Car Domain
In addition to the domain of face images, we also conduct
a re-scoring analysis for car domain. We present the anal-
ysis results in Table S.2, where we evaluate the variation
in CLIP classification probability for the attributes listed as
the columns in response to the edits indicated in the rows.
As expected, the changes that alter the car type affect the
scores for each other. For instance, transforming the car
type into sport leads to a reduced probability score for car

1https : / / github . com / UCSB - NLP - Chang /
DiffusionDisentanglement/issues/6.

Nature Pickup Sport Muscle Wagon
Nature 8.3 -6.8 -10.3 -18.4 5.1
Pickup -11 22.9 -36.3 -12.1 39
Sport -7.1 11.1 31.8 5.1 -18
Muscle -2.1 17.3 19.7 33.9 8.2
Wagon -2.9 -3.1 -34.1 -18.6 43.1

Table S.2. Re-scoring Analysis for car Domain. The change
in classification probability of the CLIP classifier for various at-
tributes in the car domain. The numbers shown in bold indicate
that NoiseCLR successfully enhances the target semantics across
all other attributes. For car domain, we perform our analysis on
edits related to car types (pickup, sport, muscle and wagon), and
background (nature).

type pickup. However, when the apply the discovered back-
ground (Nature) direction, we notice a noticeable entangle-
ment, particularly with edits related to sport and muscle car
body types. While acknowledging that our method discov-
ers more entangled directions in car domain compared to
other domains, we refer to the inherent biases in SD for
such entanglement issues.

S.4. Composing Edits
Since NoiseCLR can learn latent directions from different
domains within the shared latent space of Stable Diffu-
sion, it is capable of executing both intra-domain and inter-
domain edits (see Fig. S.4):
1. Within the same domain, where multiple face edits can

be applied simultaneously to a single image, as depicted
in Fig. S.4 (a). Using the same Stable Diffusion model,
edits in the face domain can be simultaneously applied
to a single image, allowing for changes like altering race
and adding a mustache, as illustrated in Fig. S.4 (a),
top row. Similarly, in the cat domain, our method can
concurrently apply edits affecting eye color and lion, as

https://github.com/UCSB-NLP-Chang/DiffusionDisentanglement/issues/6
https://github.com/UCSB-NLP-Chang/DiffusionDisentanglement/issues/6
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Figure S.2. Our comparison with Diffusion-Pullback [5] focuses on the overweight and gender edits, the sole directions provided in
[5] (utilizing the unsupervised version of their method on Stable Diffusion for face edits). The additional directions, Old and Race, were
identified by ourselves after applying their method to 50 directions. The comparisons clearly demonstrate that our method not only executes
edits more faithfully compared to [5], but it also uncovers a significantly greater number of directions, as detailed in the main paper.

shown in Fig. S.4 (a), middle row. Our method can also
combine multiple styles in Art domain, as shown in Fig.
S.4 (a), bottom row.

2. Across different domains, enabling the application of
edits from various domains on the same image simulta-
neously. For instance, a face edit and a cat edit can be
combined together. Moreover, our method can apply ed-
its in the car domain to transform a car into a sports car,
while keeping its original color and preserving the back-
ground (Fig. S.4 (b), top row). Concurrently, it can alter
the gender of a person in the image using a face edit. In
the same vein, within the fashion domain, our method
can change the color of a dress, while a face domain edit
can modify the race of the person wearing the dress (Fig.
S.4 (b), middle row). Our method can also combine face

and Art directions, as shown in Fig. S.4 (b), bottom row.

S.5. Interpolating Edits

Our method enables users to modulate the editing effect us-
ing a scale parameter. As illustrated in Fig. S.5, it can per-
form edits along both negative and positive scales. This fea-
ture allows users to either diminish or amplify the effect of
the editing direction. For example, with the ‘Age’ direc-
tion, users can reduce the aging effect or increase it when
applied with a positive scale. Additionally, our method
achieves these interpolations in a disentangled manner, en-
suring that the edits in both positive and negative directions
remain faithful to the original image.



Input Ours Concept Sliders p2pInput Ours Concept Sliders p2p

Race Mustache

Input Ours Concept Sliders p2p

Age Gender

Input Ours Concept Sliders p2p

Figure S.3. Comparison on Race, Mustache, Age and Gender attributes with our method, Concept Sliders[1] and Prompt2Prompt (p2p) [3].
Although all methods are capable of accomplishing the intended edit to some degree, our method stands out by remaining more faithful
to the original input image and ensuring the edits are disentangled. For instance, Prompt2Prompt (P2P) tends to significantly modify the
original image, deviating considerably from the initial input. Similarly, Concept Sliders often alter the facial shape (as observed in the
Race edit) and mix changes in the face with age attributes in the mustache edit, leading to entangled edits.

S.6. Ablation Study

In this section, we perform ablation regarding learning from
fake/real data, ablation on number of input images N , ab-
lation on number of directions K and ablation on timesteps
that edit is applied.

S.6.1. Ablations on Learning from Fake/Real Data

In our ablation study, we explored the potential of our
method to learn from synthetic images. We used single
text prompts, such as a face of a person, to generate these
fake images, focusing on the domain without specifying
particular attributes. Our experiments revealed that images
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Figure S.4. Intra-domain and Cross-domain Editing. Our
method can find domain-specific edits that can be composed either
a) intra-domain where edits from the same domain can be applied
simultaneously, b) cross-domain, where edits from different do-
mains can be combined and applied simultaneously.
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Figure S.5. NoiseCLR Interpolation Results. Our method allow
users to control the editing effect using a scale parameter. This
feature allows users to either diminish or amplify the effect of the
editing direction. For example, with the ‘Age’ direction, users can
reduce the aging effect (Young) or increase it when applied with a
positive scale (Old).

randomly generated by Stable Diffusion (SD) often exhibit
artifacts and biases, potentially affecting learning stability.
Despite this, when using 100 fake images, our method suc-
cessfully identified diverse directions, such as race. Fig.
S.6 (rightmost column) compares Gender direction learned
from real (left) and fake (right) images. Both models effec-
tively performed disentangled edits. However, the range of
discovered directions using fake images was significantly
narrower compared to real images, in particular we were
only able to discover age, race (asian), race (indian), gen-
der, mustache, chin shape, child and cartoon directions.
This limitation could be attributed to Stable Diffusion’s ten-
dency to produce flawed images with issues like crooked
teeth or other artifacts, which can obstruct the learning pro-
cess.

S.6.2. Ablations on N

Our method requires only a small set of images to learn
domain-specific directions. We have found that N = 100
images are generally sufficient for learning a rich and di-
verse range of directions. To explore the impact of the
number of images on the discovery of directions, we con-
ducted an ablation study using N = 10, 100, 1000 images
randomly selected from the FFHQ [4] dataset, aiming to
learn face-specific edits while keeping the number of direc-
tions K = 100 constant. Our findings indicate that our
method can still learn directions with as few as N = 10 im-
ages, but the resulting directions often perform more coarse-
grained edits, as shown in “Race” edit in Fig. S.6 (first col-
umn). We believe this is due to the limited number of sam-
ples (N = 10) available for learning our contrastive loss,
providing too few positive and negative pairs to effectively
learn K = 100 directions. Conversely, when comparing
N = 100 and N = 1000 samples, our method demon-
strates the ability to learn the same directions in both cases.
This indicates that a sample size of N = 100 is sufficient
for effectively learning directions.

S.6.3. Ablations on K

Our method includes a hyperparameter, K, which deter-
mines the number of directions to be learned. For varied do-
mains like faces or art, we typically set K = 100, while for
simpler domains like cats and cars, we choose K = 50. In
this section, we conducted an ablation study on the impact
of the K parameter in the face domain, keeping N = 100
constant, and experimenting with K = 10, 50, 100. We ob-
served that when the model is constrained to learn a smaller
set of directions, such as K = 10, it tends to focus on
coarse-grained edits that edit the overall structure of the
face, like race, age, overweight, or cartoon style. In con-
trast, increasing the number of directions to K = 50 or
K = 100 leads to the discovery of more fine-grained edits,
such as adjustments to lipstick, chin, eyebrows, etc. Fig.



S.6 (middle column) showcases “Race” edit discovered us-
ing K = 10 and K = 100. We also noticed that edits
learned with K = 10 directions are slightly more entangled
than those learned with K = 100. This could be due to the
fact that directing the model to differentiate K = 100 direc-
tions from each other enforces disentanglement, whereas a
smaller number of directions may lead the model to learn
more entangled edits.

S.6.4. Ablations on timesteps

Prior work such as [7] and [3] has shown that timesteps
are crucial factors affecting the disentangled editing capa-
bility of Stable Diffusion. Our method, while learning di-
rections by considering all timesteps of the diffusion model,
specifically modifies the noise prediction for a certain inter-
val of timesteps to achieve more disentangled edits. As a
rule of thumb, we apply the discovered edits starting from
t = 0.5T to achieve disentangled edits. However, for ed-
its that require changes in the coarse structure of the input
(e.g. eyeglasses), editing at earlier timesteps are required
(within the interval [0.9T, 0.8T ]). To demonstrate the ef-
fect of timesteps on the disentanglement property of the ed-
its, we conduct an ablation study where we apply selected
edits on different timestep intervals in Fig. S.7. In our ab-
lations, we select the number of denoising steps as 50 and
demonstrate the edited images w.r.t. denoising step indices
where the edit is applied. As shown in our results, apply-
ing edits at earlier denoising steps result in more significant
changes in the input image whereas edits at later iterations
succeed in preserving the coarse structure of the input.
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Figure S.6. Ablation study results. We perform our ablations on three different variables, which are the usage of real/fake samples,
different number of directions(K) and number of samples used for training the model(N ). For each of our ablations, we demonstrate
qualitative results on two different edits learned by each variant.
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Figure S.7. NoiseCLR Ablation study on editing interval. We demonstrate the effect of editing timesteps with ablations over age and
race edits. We perform our experiments over 50 denoising steps over images generated with Stable Diffusion. For clarity, we demonstrate
the applied edits on the editing iterations where iteration 0 corresponds to t = T whereas iteration 50 stands for t = 0.
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