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9. More on dataset pipeline
9.1. Pose bin
Fig. 11 illustrates the distribution of frames per bin fol-
lowing our automated processing pipelines, presented on a
logarithmic scale. As depicted in the figures, the original
datasets contain a substantial volume of frames, yet a pre-
dominant portion consists of frontal faces. This observa-
tion substantiates our previously articulated arguments re-
garding the prevalent bias toward frontal views. Leveraging
our preprocessing pipelines enables us to concentrate solely
on extreme view images, reserving the utilization of frontal
views for some specific subtasks like face reenactment and
face verification. Furthermore, Fig. 12 shows the pose dis-
tribution in terms of angle bins of the original two video-
dataset compared to IJB-C and CPLFW.

Figure 11. Frame distribution for each pose bin after our auto-
mated attributes preparation process.

Figure 12. Pose distribution in terms of angle bins of CelebV-HQ
+ VFHQ, IJB-C, CPLFW

9.2. Model hyperparameters
In the process of extracting face bounding boxes and 5
keypoints via RetinaFace[36], we keep only detected faces
with confidence above 0.9 to ensure the retention of pro-
file faces while minimizing false negatives and low quality
facial detections. Additionally, faces with an area smaller
than 256 ⇥ 256 in both datasets are disregarded. To fur-
ther refine the selection, the HyperIQA score, specifically
set at 42 according to [48], is employed during the sam-
pling phase to exclude frames of poor quality. Moreover, to
address the issue of low-light images, which is not explic-
itly assessed by HyperIQA, a method referenced in [3] is

utilized, filtering out images with a brightness value below
40, a value determined empirically to suit our specific re-
quirements. For DirectMHP, we first apply multiscale infer-
ence and later use a confidence threshold of 0.7 and an IoU
threshold of 0.45 during the non max suppression (NMS)
algorithm. All other models, if not specified, follow the
original setup of the original authors.

10. Dicussion on Negative Socieltal Impacts
Our dataset comes from putting together two public datasets
[48, 54]. Consequently, we share similar concerns re-
garding privacy and bias with the original datasets from
which our data is sourced. It is crucial for any user of our
dataset to adhere strictly to the rules outlined in the original
datasets regarding its usage. Moreover, we advocate and
encourage further exploration and endeavor aimed at de-
veloping strategies that proactively minimize and counter-
act any deleterious societal implications, thereby harnessing
the substantial research value embedded within the dataset
while upholding ethical considerations and societal well-
being.

11. More on face recognition task
11.1. Face identification
Besides face verification, our dataset can also be used
for face identification evaluation. Since we have multiple
frames and multiple videos for an identity, we decided to
develop both open-set and closed-set scenarios for the new
benchmarking dataset. In the closed-set, we used 10,000
gallery items (1 per ID) and 50,000 probes. For open-set,
1,000 gallery items (1 per ID) and 5,000 mate searches, plus
32,275 non-mate searches from other IDs. For filtering and
augmentation, we apply the same strategy as when building
the face verification benchmark dataset. We followed NIST
guidelines for metrics: FNIR at FPIR for open-set and TPIR
at Ranks for closed-set. We tested Arcface Resnet-18/50
pretrained on Glint360K, Tab. 7 shows that pose remains a
challenge in the face identification task.

11.2. Training face recognizer
For futher investigation of the pose distribution, we devel-
oped a training dataset of around 300,000 samples taken
from identities that were not used for the proposed bench-
mark dataset. Due to time limitations, we trained only a
ResNet-18 model using MS1MV3 along with this dataset
for 20 epochs, following the same training settings from
[7]. As shown if Tab. 8, our training dataset enhances the



Open-set Closed-set
FPIR 0.003 0.03 Rank 1 5

R18 FNIR # 0.45 0.26 TPIR " 0.80 0.96
R50 FNIR # 0.41 0.24 TPIR " 0.83 0.97

Table 7. Quantitative result of state-of-the-art models upon our
proposed face identification benchmark dataset. We provided both
scenarios: open-set and closed-set.

Training EFHQ CP
LFW

CF
PFP IJBCf2f f2p p2p

MS1MV3 0.93 0.57 0.88 0.75 0.82 0.94
+ EFHQ 0.98 0.77 0.94 0.79 0.90 0.94

Table 8. Effect of EFHQ as additional training data
on model performance, with TAR@FAR=1e-4 for IJB-C and
TAR@FAR=1e-3 for others.

trained model’s performance on pose-focused benchmarks,
albeit not marginally significant.

12. Training details
12.1. Face Reenactment
For face reenactment, we retrained two current state-
of-the-art models, TPS and LIA, starting from scratch.
This retraining was conducted on two datasets, including
VoxCeleb1 and VoxCeleb1 supplemented with our EFHQ
dataset. All models were trained using 2 Nvidia A100
GPUs with 40GB of memory. For both TPS and LIA mod-
els, we followed the hyperparameter choices outlined in the
respective papers [43, 51].

In the case of VoxCeleb1, we followed the download and
preprocessing pipeline as described in [38]. However, due
to copyright and regional restrictions, we encountered lim-
itations in fully acquiring the original dataset. Specifically,
out of the 3,442 videos available in the original data, we
were only able to download approximately 3,000 videos.
This constraint limited our capacity to match the perfor-
mance of the released pretrained models. Consequently, we
opted to train both models from scratch for both datasets to
ensure a fair benchmark for evaluation.

Thin-Plate Spline Motion Model. We set the total batch
size to 28. The training process consists of two phases:
the Base model phase, spanning 100 epochs with a learn-
ing rate of 0.0002, followed by the AVD Network phase,
which extends for 200 epochs with a learning rate of 0.001.
We utilize K = 10 TPS transformations to approximate the
motion. In our loss function, we incorporate � = 10 for the
perceptual loss.

LIA. For LIA, we train both models with a total batch size
of 32 and a learning rate of 0.002. The dimensions of all
latent codes and the directions in the set of motion direc-

tions Dm are set to be 512. Meanwhile, we set the number
of motion directions Dm to 20. In our loss function, we use
� = 10 for the perceptual loss.

12.2. ControlNet

Throughout both the training and sampling stages, a stan-
dardized set of prompt templates was consistently employed
across all samples, formulated as “A profile portrait image
of a [emotion] [race] [gender].” Specifically, in the sam-
pling phase for evaluation, we implemented an augmen-
tation strategy by integrating positive attributions, encom-
passing descriptors like “rim lighting, studio lighting, dslr,
ultra quality, sharp focus, tack sharp, depth of field (dof),
film grain, Fujifilm XT3, crystal clear, 8K UHD, highly de-
tailed glossy eyes, high detailed skin, and skin pores.” Com-
plementing these positive descriptors, we incorporated a set
of negative keywords, including “disfigured, ugly, bad, im-
mature, cartoon, anime, 3d, painting, and black and white.”
The intent behind this approach was to refine the image
quality within the sampling and evaluation process. This
strategic augmentation framework aimed to enhance the
overall quality and fidelity of generated images, ensuring a
more refined output aligning with desired criteria and mini-
mizing undesirable attributes.

13. CPLFW artifacts

Figure 13. Representative examples of the noise sample due to
misalignments in the widely-used processed version of CPLFW.

During the examination of the commonly utilized pro-
cessed version of CPLFW[52] by [7], numerous instances
of noise were identified, encompassing non-human and
partial-human images. These anomalies likely arose from
misalignments attributed to flawed landmark detections. To
systematically address the bulk of these artifacts, we in-
tegrated a pretrained RetinaFace model [36] to automat-
ically filter out images lacking detections. This filtering
process resulted in the removal of 696 images, equating
to 696 pairs, constituting approximately 11% of the total
pairs. Fig. 13 showcases representative samples obtained
through our cleaning pipeline. In the first row, we compile
non-human images, whereas in the second row, we compile
partial-human images.



14. More on the robustness of data processing
pipeline.

To evaluate the robustness of our data processing pipeline,
we test it with the raw LPFF dataset. As shown in
Fig. 10, our pipeline detected additional profile-view faces
filtered out by the LPFF pipeline, likely due to misde-
tections or overly strict pose density gating. The LPFF
pipeline relies on three main processes for filtering: land-
mark prediction with Dlib[19], pose density gating using
3D face reconstruction[8], and manual inspection. The lat-
ter two stages depend heavily on accurate landmark pre-
dictions in the first step. Compared to Dlib, methods like
RetinaFace[36] and SynergyNet[46] used in our pipeline
offer improved face and landmark detection, especially for
challenging poses. Our pipeline delivered markedly much
superior landmark quality. To filter frontal samples, the pre-
vious work relied solely on the reconstruction model for
pose estimation. Although [8] can provide state-of-the-art
results, it depends on properly aligned images and may pro-
duce unreliable predictions when landmark quality is poor.
Our pipeline uses an ensemble of pose estimators based on
different methods, providing robustness in cases where a
single model fails. By combining multiple pose prediction
techniques, our approach can overcome the limitations of
relying on just the output of reconstruction models, espe-
cially when image alignment is imperfect or landmarks are
of low quality. This demonstrates the greater robustness of
our approach to diverse poses and image variability com-
pared to prior work. Moving forward, we hope our data
processing methodology will enable the community to de-
velop larger and higher-quality in-the-wild facial datasets.
Robust pipelines to handle pose diversity and image noise
will be essential to maximize data utilization and quality in
these days and age.

15. Survey setup

15.1. 2D GAN Generation

This survey involves a comparative analysis between
samples generated by StyleGAN2-ADA models trained
with our setup (FFHQ+EFHQ) versus LPFF setup
(FFHQ+LPFF). To ensure fairness, we specifically select
pairs of samples exhibiting similar pose angles. Our as-
sessment centers on two primary factors: Authenticity
and Sharpness. In evaluating authenticity, participants are
tasked with identifying the image with superior human face
quality, considering artificial elements like unrealistic hu-
man features, skin tone, face shape, and facial accessories.
Regarding sharpness, participants are prompted to examine
image noisiness and select the image with generally higher
image quality. In cases where a clear preference cannot be
determined, participants have the option to indicate a tie. A

total of 140 participants were engaged, contributing a com-
bined total of 2800 votes over 20 questions.

15.2. EG3D
In this survey, we conduct a comparison between sam-
ples generated by EG3D models trained using our setup
(FFHQ+EFHQ) and LFPP setup (FFHQ+LPFF). To ensure
equitable assessment, we deliberately pair samples with
similar gender, expression, and accessories whenever fea-
sible. Each sample is presented through multiple views, in-
cluding a frontal view for reference and four extreme views
for comprehensive evaluation. Our analysis centers on three
primary criteria: Pose, Identity, and Sharpness. Regarding
pose assessment, participants are tasked with identifying
the sample with superior face quality among the extreme
views, specifically focusing on facial shape, such as nose
and chin, while considering the presence of artifacts like un-
natural distortions. In evaluating identity, participants are
prompted to gauge how closely the facial identity aligns
with the frontal view. Lastly, participants are asked to as-
sess image quality for sharpness, emphasizing less noise
and sharper details in the facial region. A total of 145 partic-
ipants were engaged, contributing a combined total of 2900
votes, over 20 questions, to the study.

15.3. Face Reenactment
This study conducts a comparative analysis of models
trained on both VoxCeleb1 and VoxCeleb1+EFHQ datasets
for TPS and LIA [43, 51]. In order to offer a more com-
prehensive evaluation scenario for users, we compare video
output sequences of same-identity reenactment between the
baseline model and the model trained on our dataset rather
than assessing individual frames. This approach facilitates
a nuanced evaluation, especially in capturing the smooth-
ness of pose transitions and illustrating video consistency
when handling long sequences of extreme head poses. Our
assessment focuses primarily on two key criteria: Identity
and Motion. In the context of identity replication, our focus
is on evaluating which model more accurately replicates the
identity portrayed in the ground-truth driving video. This
assessment takes into consideration facial features and the
presence of any artificial artifacts. For motion replication,
the focus shifts to discerning which model more accurately
reproduces the sequence of motion represented in the driv-
ing video. In cases where users find it challenging to deter-
mine superiority, they have the option to indicate a tie. In
total, we involved 170 users, who collectively contributed
8500 votes to this evaluation, addressing 25 questions for
each face reenactment method.

16. Additional Qualitative results
We provide more qualitative examples of 2D/3D-aware
GAN generation, diffusion-based text-to-image generation,



and face reenactment to further demonstrate the superiority
of our method. The short descriptions for the figures are
shown below.
• Fig. 14 shows a comparative analysis conducted at the

patch level between samples from StyleGAN2-ADA
trained with FFHQ+LPFF and FFHQ+EFHQ datasets to
further elucidate the quality and sharpness of the synthe-
sized facial images. Fig. 15 exhibits additional samples
generated by our models.

• Figs. 16 to 20 present a comparison of synthesized faces
from various views produced by EG3D, trained with
FFHQ, FFHQ+LPFF, and FFHQ+EFHQ datasets. More-
over, Figs. 21 and 22 serve the same purpose as the afore-
mentioned figures but with a different setup of viewing
angles.

• Fig. 23 present a comparison of synthesized faces from
ControlNet trained with OpenPose[4] ’s dataset (released
by ControlNet[49]) and trained with our dataset.

• Figs. 24 to 26 present a comparison of same-identity face
reenactment from TPS, trained with VoxCeleb1 and with
VoxCeleb1+EFHQ.

• Figs. 27 to 29 present a comparison of same-identity face
reenactment from LIA, trained with VoxCeleb1 and with
VoxCeleb1+EFHQ.

• Fig. 30 presents a comparison of cross-identity face reen-
actment from both LIA and TPS, trained with VoxCeleb1
and with VoxCeleb1+EFHQ.



Figure 14. Comparison between profile-view generated samples of StyleGAN2-ADA training with FFHQ+LPFF (left) and FFHQ+EFHQ
(right), with truncation  = 0.7.



Figure 15. Samples from the model trained with FFHQ+EFHQ, with truncation  = 0.7..
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Figure 16. Comparison between multiview generated samples, with truncation  = 0.8, of EG3D model trained with various datasets
(for both LPFF/EFHQ, the training dataset is combined with FFHQ).
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Figure 17. Comparison between multiview generated samples, with truncation  = 0.8, of EG3D model trained with various datasets
(for both LPFF/EFHQ, the training dataset is combined with FFHQ).
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Figure 18. Comparison between multiview generated samples, with truncation  = 0.8, of EG3D model trained with various datasets
(for both LPFF/EFHQ, the training dataset is combined with FFHQ).
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Figure 19. Comparison between multiview generated samples, with truncation  = 0.8, of EG3D model trained with various datasets
(for both LPFF/EFHQ, the training dataset is combined with FFHQ).
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Figure 20. Comparison between multiview generated samples, with truncation  = 0.8, of EG3D model trained with various datasets
(for both LPFF/EFHQ, the training dataset is combined with FFHQ).
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Figure 21. Comparison between multiview generated samples, with truncation  = 0.8, of EG3D model trained with various datasets
(for both LPFF/EFHQ, the training dataset is combined with FFHQ).
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Figure 22. Comparison between multiview generated samples, with truncation  = 0.8, of EG3D model trained with various datasets
(for both LPFF/EFHQ, the training dataset is combined with FFHQ).



Figure 23. Comparison profile-view generated samples of pretrained ControlNet (left) and our fine-tuned ControlNet (right) with the
prompt: “A profile portrait image of a person.”
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Figure 24. Comparison between same-identity reenactment of TPS model trained with various datasets. The first frame of each row
represents the source image, while the last row depicts the ground truth driving frames.
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Figure 25. Comparison between same-identity reenactment of TPS model trained with various datasets. The first frame of each row
represents the source image, while the last row depicts the ground truth driving frames.
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Figure 26. Comparison between same-identity reenactment of TPS model trained with various datasets. The first frame of each row
represents the source image, while the last row depicts the ground truth driving frames.
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Figure 27. Comparison between same-identity reenactment of LIA model trained with various datasets. The first frame of each row
represents the source image, while the last row depicts the ground truth driving frames.
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Figure 28. Comparison between same-identity reenactment of LIA model trained with various datasets. The first frame of each row
represents the source image, while the last row depicts the ground truth driving frames.
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Figure 29. Comparison between same-identity reenactment of LIA model trained with various datasets. The first frame of each row
represents the source image, while the last row depicts the ground truth driving frames.
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Figure 30. Comparison between cross-identity reenactment of models trained with various datasets. The first frame of each row represents
the source image, while the last frame depicts the ground truth driving frame.
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