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Figure 7. Euclidean Distance between Predicted Embeddings
Reflect Taxonomic Distance in iNaturalist+CUB. TASK2BOX
embeddings are projected closer for smaller taxonomic distances.

7. Further Analysis of TASK2BOX

Euclidean Distance Between TASK2BOX Embeddings
Reflects Taxonomic Structure. Fig. 7 displays the average
embedding and taxonomic distance within a neighborhood
of the m closest datasets. Taxonomic distance is defined as
the symmetric graph distance in the taxonomy tree. As the
number of neighbors m being considered increases, we plot
the average distance between TASK2BOX embeddings. Al-
though the model is not directly supervised to mirror tax-
onomic distances, it inherently learns to position similar
datasets closer together.
Average Dataset CLIP Embeddings are Effective. While
employing both the mean and variance could assist in es-
timating the general location and spread, Table 1 indicates
that using solely the mean across different data points in the
dataset generally yields better or equally effective perfor-
mance. This can be attributed to the unique positioning of
the average embedding depending on the hierarchical level
(i.e., class, order, or family in iNaturalist). Fig. 8 displays
box embeddings at various hierarchical levels in iNatural-
ist, where the center coordinates of supersets lie beyond the
bounds of the box representations of their subsets.
TASK2BOX Performs Well Even When Trained on Only
50% of Relationships Between Datasets. Table 5 demon-
strates the model’s ability to generalize to unseen relation-
ships when trained with only 50% of the pairwise relation-
ships between datasets. Despite the limited relationship
data used for training, TASK2BOX can effectively gener-
alize to other relationships. This aspect is particularly valu-
able in scenarios where acquiring comprehensive dataset re-
lationship information is resource-intensive. For instance,
in computing task affinities as done in Taskonomy [52], de-
termining transfer learning gains from a source task to a tar-
get task necessitates model training. The ability to capture

unseen relationships without complete information makes
resource-intensive analyses more practical.
TASK2BOX has Several Advantages Over Simple Di-
mensionality Reduction. TASK2BOX can predict and
visualize asymmetric relationships of new tasks in rela-
tion to a collection of other existing tasks. Instead of re-
optimizing the representation each time a new task is intro-
duced, TASK2BOX predicts an embedding that encapsulates
the relationship of the new entity with existing entities. This
ability to predict relationships between novel tasks demon-
strates that our model can generalize beyond the tasks it has
previously seen. While existing dimensionality reduction
methods such as t-SNE [44] and UMAP [28] provide visu-
alizations, they inherently represent each entity as a point
in Euclidean space, resulting in symmetric visualizations.
In contrast, TASK2BOX can represent asymmetric relation-
ships, such as hierarchies and transferability.
TASK2BOX Can Be Used for Several Applications Re-
lated to Task Relationships. TASK2BOX serves as a
tool for visualizing relationships among large collections
of datasets, facilitating dataset discovery, measuring over-
laps, predicting transferability, and organizing tasks for
multitasking. For instance, upon encountering a new task,
TASK2BOX can predict its relationship with existing tasks
(see Tables 1, 2, and 3 under Novel Datasets). By utiliz-
ing task affinities, solutions for the new task can be devel-
oped by leveraging models from existing tasks with strong
relationships, thereby enabling effective transfer learning.
Furthermore, hierarchical relationships can identify which
datasets have sufficient overlap to be utilized for further
training or evaluation purposes. At present, there are limited
techniques available that effectively visualize asymmetric
relationships between datasets.
Training TASK2BOX is Most Effective when Utilizing
All Loss Terms. Table 4 demonstrates the impact of vari-
ous terms in the loss function (Eq. 4). Optimal performance
is achieved by incorporating all loss terms during training.

8. Additional Visualizations

Fig. 9 and 10 present additional visualizations for iNatural-
ist+CUB and ImageNet, respectively. Across various sub-
sets of datasets, TASK2BOX successfully learns and depicts
the hierarchical relationships. Datasets that belong to the
same parent category are shaded in identical colors. Fig. 11
provides further visualizations for source/target task rela-
tionships within the Taskonomy benchmark, effectively il-
lustrating source and target tasks that transfer well.



LE + LD + LR �LE �LD �LR

iNat+CUB (F1 Score) 84.67% 4.60% 84.56% 84.21%
ImageNet (F1 Score) 90.58% 3.25% 89.02% 89.76%

Taskonomy (⇢) 0.94 0.26 0.62 0.93

Table 4. Effect of Various Loss Terms on Training TASK2BOX. (Refer to Eq. 4). LE accounts for overlap, LD the distance, and LR

the regularization. 5D box embeddings were predicted using the base representation µCLIP for iNaturalist (iNat), CUB, and ImageNet
datasets; attribute-based representations were used for Taskonomy.

ImageNet iNaturalist + CUB Taskonomy

µCLIP [µ,�2]CLIP FIM µCLIP [µ,�2]CLIP FIM Spearman’s ⇢

TASK2BOX (2D) 51.94% 51.07% 27.12% 53.52% 51.78% 27.21% 0.82 ± 0.06
TASK2BOX (3D) 67.26% 66.68% 41.23% 63.78% 65.38% 48.19% 0.90 ± 0.02
TASK2BOX (5D) 74.09% 72.89% 53.66% 68.11% 68.60% 62.61% 0.92 ± 0.03
MLP 45.44% 52.24% 31.44% 43.42% 55.08% 29.91% 0.77 ± 0.06
Linear 12.75% 10.47% 25.90% 3.53% 5.63% 8.98% 0.70 ± 0.05

Table 5. Performance when Trained on only 50% of Relationships. Even with limited data on relationships between existing datasets,
TASK2BOX shows strong performance.

Figure 8. Average embeddings (center box coordinates) of su-
perset datasets are outside the bounds of the subset datasets.
Due to the distinct location of the mean, simply providing the av-
erage embedding to the model can be sufficient for training.

9. Implementation Details
Below, we detail the configurations and hyperparame-
ters used for extracting the base representations, training
TASK2BOX, and visualizing public datasets.

9.1. Base Task Representations
9.1.1 CLIP Embeddings

The CLIP base embeddings were generated using a ViT-
H/14 network pretrained on LAION-2B. Each image was
preprocessed by the provided transforms in the OpenCLIP
library [20]. The text labels for the corresponding images
were processed to be in the form “A photo of [CLS]”, tok-
enized with OpenCLIP, and encoded using the pretrained
network. For iNaturalist+CUB, the labels correspond to
the species of the organism in the image, whereas for Im-

ageNet, the labels correspond to the name of the object in
the image. The embeddings are taken across all images and
processed as discussed in § 3. To have a consistent setup
across different base representations for iNaturalist+CUB
and ImageNet, we excluded datasets that only have a sin-
gle class (since TASK2VEC only extracts embeddings for
those that have multiple classes). In addition, similar to the
TASK2VEC setup, we also exclude taxa that have conflict-
ing taxonomy between iNaturalist and CUB.

9.1.2 TASK2VEC Embeddings

For each dataset, we generated embeddings using
TASK2VEC with their recommended settings, on the pre-
trained ResNet34 network, using the Adam optimizer over
10 epochs with LR = 4 ⇥ 10�4 and weight decay of
� = 10�4

. We used a maximum dataset size of 10,000
and 100 batches in order to generate task representations
with the montecarlo method. For a given hierarchical task,
we generated a dataset using a subset of classes which fell
within the given hierarchy for training. For instance, if there
were 20 species in a given family, our task representation for
that family was the corresponding vector from TASK2VEC
trained on the 20 species within that family. We com-
bined CUB and iNaturalist into a single dataset by merg-
ing overlapping species classes. Due to discrepancies in the
taxonomy between the two datasets, we simply excluded
taxa which conflicted in our experiments. Finally, since
TASK2VEC requires the training of a model, we did not
generate embeddings for groupings which only contained
a single element.



Figure 9. Learned embeddings for additional iNaturalist+CUB test cases. Visualization of various test cases to evaluate TASK2BOX.
Similar to previous results, groups belonging to the same classes naturally form a hierarchy and are positioned close to each other.

Figure 10. Learned embeddings for additional ImageNet test cases. TASK2BOX is shown to learn hierarchies in the various groups. In
addition, similar objects are placed closer to each in the embedding space.

Figure 11. Additonal visualizations of tasks in Taskonomy showing source tasks that transfer well to specific target tasks (shaded).
(a) shows that Colorization, Jigsaw Puzzle, and Inpainting are all good candidates for transfer learning onto Euclidean distance. (b), (c),
and (d) show similar source task relationships for Edge-3D, Keypoints-2D, and Point Matching, respectively. It can also be observed that
Inpainting transfers well to Colorization from observing subfigures (a), (c), (d).

9.1.3 Attribute-based Embeddings

Due to the various modalities present in Taskonomy tasks
that have different types of inputs/outputs, we were unable
to represent them via CLIP in a straightforward and con-
sistent manner. As a result, we constructed a table of 15
attributes for each task which can be answered with a yes or
no. In order to construct unique embeddings for each task,

the i-th attribute corresponds to the i-th dimension of the
base representation embedding ei, where ei = 1 if the task
satisfies the attribute (i.e., when considering a specific task,
the i-th attribute can be answered with a yes) and ei = 0
otherwise. While this representation is not necessarily ex-
haustive, we show that TASK2BOX can effectively gener-
alize on unseen relationships and tasks. Future work can
consider looking into available datasheets [15] or dataset



descriptions to construct attribute-based embeddings. Ta-
ble 6 enumerates the attributes we considered for represent-
ing each task in Taskonomy. Table 7 shows the correspond-
ing base representations for each Taskonomy task based on
the enumerated attributes.

9.2. TASK2BOX Training Details
The box embedding library from [8] was used to create in-
stances of boxes. To compute the loss in Eq. 5, we use
a volume temperature of 0.1, and intersection temperature
of 0.0001. The model for TASK2BOX uses a 3-layer MLP
with two linear layer heads, and is trained using the loss in
Eq. 4. The Adam optimizer is used with LR = 1⇥ 10�3.

For hierarchical datasets, we train all models (including
baselines) on at least 150 datasets at a time, with 18,000 re-
lationships used for training, 2,250 for validation, and the
remaining 2,250 relationships for evaluation. An unseen
collection of 100 datasets (15,000 relationships with exist-
ing datasets) are used as novel dataset evaluations. The per-
formance is averaged over multiple instances of training and
testing from randomly sampled datasets and relationships.

For the Taskonomy benchmark, models are also trained
on a subset of randomly sampled relationships R within ex-
isting datasets DE . Eq. 4 is optimized such that relation-
ships between low dimension embeddings z match the task
affinities provided by Taskonomy [52]. Since Taskonomy is
limited to 25 vision tasks, only 3 could be used for evalu-
ating the performance on novel datasets. The rest of the vi-
sion tasks were used for training and validation. Similar to
the hierarchical datasets, multiple instances were sampled
for performance evaluation. At the same time, while task
affinities from [52] were already normalized in the range
[0, 1], the distribution is skewed to the right. The task affini-
ties are re-scaled using Eq. 8 to normalize the distribution
where x is the task affinity value, x0 is the re-scaled task
affinity value, and k is a hyperparameter we set to 50. We
train all models using the re-scaled task affinities, and con-
vert it back to the original scale for evaluation.

x
0 =

exp (kx)� exp (�kx)

exp (kx) + exp (�kx)
(8)

9.3. Public Dataset Visualization
Since no ground truth relation labels are available for train-
ing the model on public datasets, we use the following
“soft” labels for defining relationships between pairs of
datasets. The soft labels are defined as the asymmetric over-
lap (similar to Eq. 5) between the base representation of
datasets. For the Hugging Face visualization, we use CLIP
embeddings as the base representation: for each dataset,
we sample N image-label pairs where N  10, 000, then
we embed the images and the labels using CLIP to pro-
duce N embeddings per dataset. To get the soft overlap

value between two datasets so(Di,Dj), we use Eq. 9 where
Ei = {e(1)i , e

(2)
i , . . . e

(N)
i } is the set of image-label embed-

dings for dataset Di, co(Di,Dj) is the count of overlapping
embeddings of Di with respect to Dj , and |Ei| is the number
of embeddings in Ei.

so(Di,Dj) =
co(Di,Dj)

|Ei|
(9)

In Eq. 9, co(Di,Dj) counts the number of embeddings
e
(k)
i 2 Ei that satisfy d

(k)
ij < tj , where d

(k)
ij is the min-

imum euclidean distance of e
(k)
i among all embeddings

e
(k)
j 2 Ej of dataset Dj , and tj is the average euclidean dis-

tance deuc(·, ·) between any two embeddings in Dj . Eq. 10
shows how co(Di,Dj) is computed where [·] is an indica-
tor function that evaluates to 1 if the expression inside the
brackets is true, and 0 otherwise. N = |Ei| which is the
number of image-label embeddings in dataset Di.

co(Di,Dj) =
NX

k=1

[d(k)ij < tj ] (10)

Eq. 11 and Eq. 12 show how d
(k)
ij and tj are computed.

M = |Ej | which is the number of image-label embeddings
in dataset Dj .

d
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e(l)j 2Ej

deuc

⇣
e
(k)
i , e

(l)
j

⌘
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The soft overlaps between all pairs of datasets are com-
puted and used as supervision to train TASK2BOX. Note
that similar to Eq. 5, Eq. 9 is also an asymmetric measure of
similarity between two datasets. The input to TASK2BOX
uses the average CLIP embedding per dataset (Eq. 1), and
the model is trained using Eq. 4. We additionally include a
loss term LA that encourages the area of the box embedding
zi to correspond to the size of the dataset |Di| (i.e., the num-
ber of samples available in the dataset). Eq. 13 shows how
the loss is computed. LA is added to the objective function
discussed in Eq. 4.

LA = MSE (vol(zi), |Di|) (13)

Results on image classification datasets from Hugging
Face are shown in Fig. 5. The same method can also be ap-
plied to other datasets where only images and correspond-
ing labels are available.



Dimension Corresponding Task Attribute (answered with yes/no)

0 Does the task input consist of multiple images depicting different scenes?
1 Are the output spatial dimensions (height and width) the same as the input?
2 Does the task output contain geometric information?
3 Does the task output contain classification of objects?
4 Does the task require 3D knowledge?
5 Is the task a generative task?
6 Is the task output a single channel output?
7 Does the task have more than one input?
8 Does the task have more than two inputs?
9 Is the task output the result of a first order operation (e.g. edges as opposed to curvature)?

10 Does the task require generating new information?
11 Does the task require knowledge of objects?
12 Does the task require knowledge of colors/light?
13 Does the task involve camera pose estimation?
14 Does the task involve pixel alignment?

Table 6. List of attributes used to represent each task in Taskonomy and their corresponding dimension. We did this to generate a
unique representation of each task. While not necessarily exhaustive, we show TASK2BOX can generalize using these attributes.

Task Name 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Autoencoder 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
Colorization 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0
Curvatures 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0

Denoising-Autoencoder 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
Depth 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0

Edge-2D 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
Edge-3D 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0

Euclidean-Distance 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0
Inpainting 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0

Jigsaw-Puzzle 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Keypoint-2D 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
Keypoint-3D 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0

Object-Classification 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0
Reshading 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0

Room-Layout 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0
Scene-Classification 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

Segmentation-2D 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Segmentation-3D 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0

Segmentation-Semantic 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0
Surface-Normal 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0
Vanishing-Point 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0

Pairwise-Nonfixated-Camera-Pose 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0
Pairwise-Fixated-Camera-Pose 1 0 1 0 1 0 1 1 0 0 0 0 0 1 1
Triplet-Fixated-Camera-Pose 1 0 1 0 1 0 1 1 1 0 0 0 0 1 1

Point-Matching 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1

Table 7. Base representation used for each task for the attribute-based embedding. The i-th dimension signifies a yes/no response to
the question in Table 6, where ei = 1 for yes, and ei = 0 otherwise.

10. Descriptions of Taskonomy Tasks

Below, we provide a brief description of each task. For a
more complete definition, we refer to Taskonomy [52].
1. Autoencoder: Using an encoder-decoder neural network

that takes an input image, distills it to a single vector
representation, then reconstructs the image.

2. Colorization: Selecting pixel color assignments for a
black and white image.

3. Curvatures: Given an image, identify the degree of cur-



vature of the physical object on each pixel.
4. Denoising-Autoencoder: Denoise an image using an

encoder-decoder structure.
5. Depth: Find the z-buffer depth of objects in every pixel

of an image.
6. Edge-2D: Identify strong boundaries in the image.
7. Edge-3D: Find occlusion edges, where an object in the

foreground obscures things behind it.
8. Euclidean-Distance: For each pixel, find the distance of

the object to the camera.
9. Inpainting: Given a part of an image, reconstruct the rest.

10. Jigsaw-Puzzle: Given different parts of an image, re-
assemble the parts in order.

11. Keypoint-2D: Find good pixels in the image which are
distinctive for feature descriptors.

12. Keypoint-3D: Find good pixels like in Keypoint-2D, but
using 3D data and ignoring distracting features such as
textures.

13. Object-Classification: Assign each image to an object
category.

14. Reshading: Given an image, generate a reshaded image
which results from a single point light at the origin.

15. Room-Layout: Given an image, estimate the 3D layout
of the room.

16. Scene-Classification: Assign a scene category to each
image.

17. Segmentation-2D: Group pixels within an image, based
on similar-looking areas.

18. Segmentation-3D: Group pixels within an image, based
on both the image and depth image and surface normals.

19. Segmentation-Semantic: Assign each pixel to an object
category.

20. Surface-Normal: Assign each pixel a vector representing
the surface normal.

21. Vanishing-Point: Identify the vanishing points within an
image.

22. Pairwise-Nonfixated-Camera-Pose: Identify the 6 de-
grees of freedom relative camera pose between two im-
ages.

23. Pairwise-Fixated-Camera-Pose: Identify the 5 degrees
of freedom relative camera pose between two images
which share a pixel center.

24. Triplet-Fixated-Camera-Pose: Identify the relative cam-
era poses between three images.

25. Point-Matching: Given two images and one point, iden-
tify the matching point in the other image.
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