
Supplementary Material for 3D Paintbrush: Local Stylization of 3D Shapes with
Cascaded Score Distillation

A. Additional Experiments
Variation. For a given mesh and prompt, there are often
multiple valid interpretations for the local edit. With differ-
ent seeds, our method produces various diverse, yet plausi-
ble, results (see Fig. 12) allowing users to choose the output
that best matches their desired edit.
Qualitative comparisons. We show qualitative compar-
isons of our method to other localization and editing tech-
niques. For our localizations, we compare to the mesh-
native approaches 3D Highlighter [10] and SATR [2]. Our
localizations are more accurate and more highly-detailed
than 3D Highlighter and SATR (see Fig. 13). For example,
the position and shape of our apron more closely adheres to
that of an apron and our necklace contains the fine-grained
chain links whereas both 3D Highlighter and SATR pro-
duce an overly smooth band. Since our method is the first
approach to perform local edits on meshes, we evaluate our
local editing capabilities by comparing to the mesh-native
global editing method Latent Paint [38] and the voxel-based
NeRF local editing method Vox-E [49]. In Fig. 14, we
observe that our method produces local stylizations with

Plaid scarf

Colorful crochet hat

Figure 12. Variation. 3D Paintbrush can give multiple varied, yet
plausible, outputs for a given local style depending on the input
seed. We show results on two different seeds for each local style.

Ours

3D Highlighter

SATR

Figure 13. Qualitative localization comparison. Our localiza-
tions are more accurate and finer-grained than 3D Highlighter [10]
and SATR [2]. Full input text prompts (from left to right): a 3D
render of a gray cow with a yellow chain link necklace, a 3D ren-
der of a gray person with a yellow apron, a 3D render of a gray
camel with a yellow turtle shell, a 3D render of a gray robot with
a yellow batman chest emblem.

higher resolution textures than Latent Paint [38] and Vox-
E [49]. Furthermore, our texture edits are contained to a
local semantic region corresponding to the target edit. In
contrast, Vox-E often makes changes to parts of the texture
that are unrelated to the target edit and Latent Paint consis-
tently makes changes to the entire texture.

Clip R-Precision "
Method CLIP B/32 CLIP B/16 CLIP L/14

Loc Style Loc Style Loc Style

3DH 13.3 n/a 7.0 n/a 23.7 n/a
LatentPaint n/a 20.0 n/a 20.0 n/a 20.0
Ours 26.7 60.0 13.0 40.0 46.7 73.3

Table 2. Quantitative evaluation. We compare our localizations
to 3D Highlighter [10] (3DH) and our local textures to Latent
Paint [38] and report CLIP R-Precision. Note, 3DH does not pro-
duce stylizations and Latent Paint does not produce localizations.

Quantitative evaluation with CLIP R-Precision. We
compare our method to mesh-native baselines using CLIP
R-Precision, an automated method for measuring alignment
between generations and text prompts commonly used in
text-to-3D [10, 25, 41, 44]. Given a set of text prompts



Ours

Latent Paint

Vox-E

Figure 14. Qualitative local stylization comparison. Our 3D
Paintbrush gives more highly detailed and local edits than Latent
Paint [38] and Vox-E [49]. Full input text prompts (from left to
right): a 3D render of a gray hand with a fancy gold watch, a 3D
render of a gray Lego minifigure with a Barcelona jersey, a 3D
render of a gray desk chair with a colorful doily seat cushion, a 3D
render of a gray person with a tie-dye apron.

and corresponding generated textured meshes, this metric
reports the percentage with which CLIP is able to retrieve
the correct text prompt used to generate each given tex-
tured mesh. 3D Paintbrush consistently scores the highest
for both localization and local texturing (Tab. 2). We give
further details on CLIP R-Precision in Appendix B.

MLP and direct optimization ablation. We show an abla-
tion of using MLPs by replacing them with direct optimiza-
tion for the localization and texture maps (Fig. 15). Our full
method (far left) using MLPs for both the localization and
texture maps gives an accurate and contiguous localization
with a clean, detailed local texture. Directly optimizing the
texture map values instead of using an MLP (center left)
results in a noisier, grainy texture. Using an MLP for the
localization map is especially important since we want the
localizations to be mostly contiguous and the smoothness
of the MLPs gives us this. Directly optimizing the local-
ization map values instead of using an MLP gives a non-
contiguous, speckled localization. This localization detri-

Both MLP Direct texture Direct Loc Both direct
Figure 15. MLP ablation. We ablate the use of MLPs by using di-
rect optimization for both the localization and texture maps. Using
MLPs provides smooth localization and texture while using direct
optimization leads to noisy and less coherent results.

Ours w/o separate MLP w/o background loss
Figure 16. Background loss ablation. Our method (left) pro-
duces an accurate localization and texture that are highly detailed
and tightly coupled. Removing the background MLP F and in-
stead learning the background through the main texture map Tmap

leads to poor localization which also degrades the texture (middle).
Removing the background loss completely leads to the incorpora-
tion of superfluous elements from the input model (i.e. a bill on a
duck) into the localization (right).

mentally affects the texture as well, whether the texture is
optimized either with an MLP (center right) or directly (far
right).
Background loss ablation. We opt to learn the background
texture in a separate map from the desired texture map (mid-
dle and bottom branches of Fig. 3) enabling our method
to produce accurate localizations with tightly coupled and
detailed textures (Fig. 16, left). If we instead remove the
explicit background texture map (and MLP) and allow the
background to be predicted using the same texture map
as the main edit texture Tmap, (by applying background
loss to Tmap masked with the inverse of the localization
mask), then the localization and texture become misaligned
(Fig. 16, middle). In this case, when the edit and back-
ground share the same texture map, if the localization re-
gion expands during training to include features that had
been considered background, the edit texture may retain
these features of the object (rather than expand the edit tex-
ture features to fill the localization) and the localization may
continue to expand. If we instead remove the background
loss entirely, this also produces undesirable results (Fig. 16,
right). Specifically, we observe extra elements incorporated
in additional localization regions that contain characteristics
of the input shape (e.g. bill on a duck).
Localization loss ablation. We show an ablation on the
localization loss (see Fig. 17). Using our full method, we
obtain a precise localization that accurately depicts the local
edit region “polo shirt” (left). Without our localization loss,



Ours w/o localization loss
Figure 17. Localization loss ablation. We show an ablation of the
localization loss using the local edit “polo shirt” on a person mesh.
Without this loss, there is no explicit incentive for the localization
to be visually meaningful in isolation which can lead to inaccurate
localization regions (right).

the only supervision signal for the localization region comes
from the style loss as that depends on the localization region
to obtain the masked texture. From just this signal, there
is no incentive for the localization to have visual meaning
and thus we often end up with inaccurate localizations (right
localization). These poor localizations can lead to worse
textures as well (right texture).

B. Implementation and Further Details
MLP architecture. Our MLPs consist of a positional en-
coding layer followed by 6 linear layers. Both texture MLPs
and the localization MLP take a dimension 3 input corre-
sponding to a 3D coordinate. All linear layers have width
256 and each linear layer is followed by a ReLU activation
and subsequently a layer norm. The localization MLP out-
puts a single probability between 0 and 1, while the texture
MLPs output 3 values each also within the range 0 to 1 cor-
responding to RBG values.
Optimization and supervision details. We use PyTorch
to implement our method. For our optimization, we use
an Adam optimizer with a constant learning rate of 1e�4.
We use the Huggingface Diffusers implementation of Deep-
Floyd IF for our diffusion supervision. For all experiments,
we use a classifier free guidance weight of 20. We train for
4 hours on a single A40 GPU which typically equates to
4000 iterations.
Text prompt formulation. To create the text prompts, our
method takes as input the object class (i.e. “cow”), the de-
sired style term (i.e. “colorful crochet”) and the desired lo-
cal edit (i.e. “hat”). To create yl, we formulate the prompt
“a 3D render of a gray [object class] with a yellow [local
edit]” or specifically, “a 3D render of a gray cow with a yel-
low hat.” To get yt, we use “a 3D render of a gray [object
class] with a [style term] [local edit]” or “a 3D render of a
gray cow with a colorful crochet hat.” To obtain yb, we use
“a 3D render of a [object class] with a yellow [local edit]”

or “a 3D render of a cow with a yellow hat.”
View selection. At each iteration of our optimization we
render our mesh from multiple views. To select these views,
we randomly sample camera elevation, azimuth, and radius
from predefined ranges that can be specified by the user. In
all of our experiments, we render 4 views each iteration.
For all experiments, we sampled azimuths ranging from 0
to 360 degrees. By default, we sample elevations from the
range 0 � 150 degrees, however for some meshes, we nar-
row this range to 0� 100 degrees. For all experiments, our
camera radius is sampled uniformly from the range 1� 1.5.
Quantitative evaluation with Clip R-Precision details.
To quantitatively evaluate our method, we use a CLIP R-
Precision metric tailored to evaluating either localizations
or local styles. We create 15 local edits and record the both
the target localization yl and target local style yt for each
edit as well as their corresponding generated localizations
and local styles. To create our localizations for 3D High-
lighter [10], we run 3D Highlighter on each of those 15 yl’s
to get 15 localizations. To create our local styles for Latent
Paint [38], we run Latent Paint on each of the 15 yt’s. To
compute the CLIP R-Precision score for localizations for
a given method, we do the following. For each localiza-
tion result Li of the 15 total from this method, we compute
the CLIP similarity between renders of Li and each of the
15 yl’s to get 15 similarity scores. If the yl with the high-
est CLIP similarity to Li is the yl that was used to gener-
ate Li then this Li is awarded a score of 1, otherwise it is
awarded a score of 0. To compute the CLIP R-Precision for
this method, we take the average score of all 15 Li’s and
multiply by 100 to get a percentage. The CLIP R-Precision
for the local styles is computed similarly, except using lo-
cal styles instead of localizations. Specifically to compute
the CLIP R-Precision of the local style for a given method,
we do the following. For each local style result Si of the
15 total from this method, we compute the CLIP similar-
ity between renders of Si and each of the 15 yt’s to get 15
similarity scores. If the yt with the highest similarity score
to Si is the yt that was used to generate Si then this Si is
awarded a score of 1, otherwise it is awarded a score of 0.
To compute the CLIP R-Precision for this method, we take
the average score of all 15 Si’s and multiple by 100 to get a
percentage.


	. Introduction
	. Related Work
	. Method
	. Local Neural Texturing
	. Visual Guidance for Localized Textures
	. Score Distillation and Cascaded Diffusion
	. Cascaded Score Distillation

	. Experiments
	. Properties of 3D Paintbrush
	. Importance of Cascaded Score Distillation
	. Evaluation

	. Conclusion
	. Acknowledgments
	. Additional Experiments
	. Implementation and Further Details

