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In our main paper, we introduced two types of utility-fairness trade-offs and proposed a method, U-FaTE, to estimate
them. Here, we provide some additional analysis to support our main results. The supplementary material is structured as
follows:
1. Representation Disentanglement in (§1)
2. Training Process of U-FaTE in (§2)
3. Implementation Details in (§3)
4. Evaluation Metrics in (§4)
5. Weighted Normalized Euclidean Distance in (§5)
6. Proofs of closed-form solutions for different notions of fairness (§6)

1. Disentanglement of the Representation
A common objective of learned representations is compactness [1] to avoid learning representations with redundant infor-
mation where different dimensions are highly correlated. Therefore, going beyond the assumption that each component of
f(·) (i.e., fj(·)) belongs to a universal RKHS HX , we impose additional constraints on the representation. Specifically, we
constrain the search space of the encoder f(·) to learn a disentangled representation [1] as

Ar :=
{
(f1, · · · , fr)

∣∣ fi, fj ∈ HX̃ , Cov
(
fi(X̃), fj(X̃)

)
+ γ ⟨fi, fj⟩HX̃

= δi,j

}
, (1)

where the Cov
(
fi(X), fj(X)

)
part enforces the covariance of Z to be an identity matrix. This kind of disentanglement is

used in PCA and encourages the variance of each entry of Z to be bounded and different entries of Z are uncorrelated to each
other. The regularization part, γ ⟨fi, fj⟩HX

encourages the encoder components to be as orthogonal as possible to each other
and to be of the unit norm, and aids with numerical stability during empirical estimation [2].

2. Training Process of U-FaTE
Fig. 1 shows an overview of the training process of U-FaTE which includes two phases. In the first phase, the features of the
training samples are extracted and used to find a closed-form solution for the encoder to maximize the objective function in
(4) while the parameters of the feature extractor (ΘFE) are frozen. In the second phase, the feature extractor is trained by
updating its parameters using SGD in order to maximize (4) while the encoder is frozen. These two phases are repeated until
convergence. These details are also mentioned in Algorithm 1.

3. Implementation Details
In training all of the methods, we pick different values of the fairness control parameter (λ) between zero and one to obtain
the trade-offs. Moreover, each experiment is run for 5 different random seeds. For datasets that contain image data, we used
the first two blocks of ResNet18 [4] and put a fully connected layer with 2048 neurons as the last layer of the feature extractor.
We used an embedding layer for the dataset with tabular data to map the raw data into an embedding space. A 3-layer MLP
is used as the target classifier network for all datasets and models. For both FolkTables and CelebA datasets, the number of
dimensions of RFF is set to 1000. In the training phase, the cosine annealing scheduler [6] is used for scheduling the learning
rate. The dimension of representations (r) is chosen c − 1 where c is the number of target attribute’s classes. To improve
training stability, we normalize the feature extractor’s output X̃ . These implementation details are summarized in Tab. 1.
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Algorithm 1: U-FaTE Training Process

Input: X ∈ Rn×h×w×c, Y ∈ Rn×|Y |, S ∈ Rn×|S|, m ∈ N
Output: fFE , fEnc

Initialize:
i← 0;
fFE ← Random Initialization;
; /* Train Feature Extractor and Encoder */
while i < m do

fEnc ← supfEnc∈Ar
{J emp(f(X;ΘEnc))}; /* solve (6) */

fFE ← SGD
{
supfFE

{J emp(f(X;ΘFE))}
}

; /* solve (2) */

i← i+ 1
end
fCLF ← SGD

{
supfCLF

{J(f(X;ΘCLF ),Y )}
}

; /* Train Classifier */

Phase 1:

Feature
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ΘFE

X̃ Closed-Form Solver

Phase 2:

Feature
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ΘFE

Encoder
ΘEnc

Z
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(1− λ)Dep (f(X), Y )− λDep (f(X), S)

ΘEnc

X X̃

Frozen Parameters
Trainable Parameters
Feature Space
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↓
↑

Figure 1. Training process of U-FaTE contains two phases. Phase 1: The closed-form solution for the encoder is calculated using the
features generated by the feature extractor while its parameters are frozen. Phase 2: The feature extractor is trained using the loss provided
by the calculated encoder parameters from Phase 1.

Dataset RFF Dim. r Training samples

CelebA 1000 1 182,637
FairFace 1000 1 86,744
FolkTables 1000 1 75,745

Table 1. Implementation details of U-FaTE for each dataset.

4. Evaluation Metrics
For measuring the utility of the target prediction, we use the accuracy of the classification task. Furthermore, we use equality
of odds difference (EOOD) or equal opportunity difference (EOD). EOOD[3] is defined as

EOOD :=
∣∣∣P (Ŷ = 1|S = 0, Y = y

)
− P

(
Ŷ = 1|S = 1, Y = y

)∣∣∣ , (2)

where y ∈ {0, 1, · · · , |Y |−1}, Ŷ is the predicted label, and S is the sensitive attribute. According to this criterion, the model
should exhibit similar prediction error rates for different groups, irrespective of their sensitive attributes. EOD[3] can also be
defined as

EOD :=
∣∣∣P (Ŷ = 1|S = 0, Y = 1

)
− P

(
Ŷ = 1|S = 1, Y = 1

)∣∣∣ (3)



This is a relaxation of EOOD for the case of binary target tasks. This metric indicates that the model should provide equal
opportunities for positive predictions for individuals with the same true outcome, regardless of their sensitive attributes.

5. Weighted Normalized Euclidean Distance
In the main paper, to compare methods based on their point-to-point distance to LST and DST, we use two weighted normal-
ized Euclidean distance defined as:

DistLST(x
i) =

√√√√w ·
(

LSTf − xi
f

maxf

)2

+ (1− w) ·
(

LSTAcc − xi
Acc

maxAcc

)2

(4)

DistDST(x
i) =

√√√√w ·
(

DSTf − xi
f

maxf

)2

+ (1− w) ·
(

DSTAcc − xi
Acc

maxAcc

)2

(5)

where f ∈ F is the fairness metric and F = {EOD,EOOD,DPV}, w is the control parameter that adjusts the weights of
each term —fairness distance and accuracy distance—in the overall distance. For calculating distances in Table 1 of the main
paper, we choose w = 0.5 which means that the distances in the fairness axis and distances in the accuracy axis are equally
important to us.

6. Solutions for Different Notions of Fairness
6.1. Proof of Theorem 1 for EO

Theorem 1. Let the Cholesky factorization of KX be KX = LXLT
X , where LX ∈ Rn×d (d ≤ n) is a full column-rank

matrix. Let r ≤ d, then a solution to (4) is

f opt(X) = Θopt [kX(x1, X), · · · , kX(xn, X)]
T

where Θopt = UTL†
X and the columns of U are eigenvectors corresponding to the r largest eigenvalues of the following

generalized eigenvalue problem.(
(1− λ)

1

n2
LT

XHKY HLX − λ
1

n2
0

LX [Y = y0]
THKS [Y = y0]HLX [Y = y0]

)
u = τ

(
1

n
LT

XHLX + γI

)
u. (6)

Proof. Consider the Cholesky factorization, KX = LXLT
X where LX is a full column-rank matrix. Using the representer

theorem, the disentanglement property in (1) can be expressed as

Cov (fi(X), fj(X)) + γ ⟨fi, fj⟩HX

=
1

n

n∑
k=1

fi(xk)fj(xk)−
1

n2

n∑
k=1

fi(xk)

n∑
m=1

fj(xm) + γ ⟨fi, fj⟩HX

=
1

n

n∑
k=1

n∑
t=1

KX(xk,xt)θit

n∑
m=1

KX(xk,xm)θjm −
1

n2
θT
i KX1n1

T
nKXθj + γ ⟨fi, fj⟩HX

=
1

n
(KXθi)

T
(KXθj)−

1

n2
θT
i KX1n1

T
nKXθj + γ

〈
n∑

k=1

θikkX(·,xk),

n∑
t=1

θitkX(·,xt)

〉
HX

=
1

n
θT
i KXHKXθj + γ θT

i KXθj

=
1

n
θT
i LX

(
LT

XHLX + nγ I
)
LT

Xθj

= δi,j .

As a result, f ∈ Ar is equivalent to

ΘLX

( 1
n
LT

XHLX + γI
)

︸ ︷︷ ︸
:=C

LT
XΘT = Ir,



where Θ :=
[
θ1, · · · ,θr

]T ∈ Rr×n.
Let V = LT

XΘT and consider the optimization problem in (13):

sup
f∈Ar

{(1− λ)Depemp(f(X), Y )− λDepemp(f(X), S|Y = 1)}

= sup
f∈Ar

{
(1− λ)

1

n2
∥ΘKXHLY ∥2F − λ

1

n2
0

∥ΘKX [Y = y0]HLS0∥
2
F

}
= sup

f∈Ar

{
(1− λ)

1

n2
Tr
{
ΘKXHKY HKXΘT

}
− λ

1

n2
0

Tr
{
ΘKX [Y = y0]HKS0

HKX [Y = y0]
TΘT

}}
= max

V TCV =Ir
Tr
{
ΘLXBLT

XΘT
}

= max
V TCV =Ir

Tr
{
V TBV

}
(7)

where the second step is due to (3) and

B :=

(
(1− λ)

1

n2
LT

XHKY HLX − λ
1

n2
0

LX [Y = y0]
THKS [Y = y0]HLX [Y = y0]

)
It is shown in [5] that an1 optimizer of (7) is any matrix U whose columns are eigenvectors corresponding to r largest
eigenvalues of generalized problem

Bu = τ Cu (8)

and the maximum value is the summation of r largest eigenvalues. Once U is determined, then, any Θ in which LT
XΘT = U

is optimal Θ (denoted by Θopt). Note that Θopt is not unique and has a general form of

ΘT =
(
LT

X

)†
U +Λ0, R(Λ0) ⊆ N

(
LT

X

)
.

However, setting Λ0 to zero would lead to minimum norm for Θ. Therefore, we opt Θopt = UTL†
X .

6.2. Proof of Theorem 1 for EOO

Theorem 2. Let the Cholesky factorization of KX be KX = LXLT
X , where LX ∈ Rn×d (d ≤ n) is a full column-rank

matrix. Let r ≤ d, then a solution to (4) is

f opt(X) = Θopt [kX(x1, X), · · · , kX(xn, X)]
T

where Θopt = UTL†
X and the columns of U are eigenvectors corresponding to the r largest eigenvalues of the following

generalized eigenvalue problem.(
(1− λ)

1

n2
LT

XHKY HLX − λ

cy−1∑
y=0

1

n2
y

LX [Y = y]THKS [Y = y]HLX [Y = y]

)
u = τ

(
1

n
LT

XHLX + γI

)
u. (9)

Proof. Consider the Cholesky factorization, KX = LXLT
X where LX is a full column-rank matrix. Using the representer

1Optimal V is not unique.



theorem, the disentanglement property in (1) can be expressed as

Cov (fi(X), fj(X)) + γ ⟨fi, fj⟩HX

=
1

n

n∑
k=1

fi(xk)fj(xk)−
1

n2

n∑
k=1

fi(xk)

n∑
m=1

fj(xm) + γ ⟨fi, fj⟩HX

=
1

n

n∑
k=1

n∑
t=1

KX(xk,xt)θit

n∑
m=1

KX(xk,xm)θjm −
1

n2
θT
i KX1n1

T
nKXθj + γ ⟨fi, fj⟩HX

=
1

n
(KXθi)

T
(KXθj)−

1

n2
θT
i KX1n1

T
nKXθj + γ

〈
n∑

k=1

θikkX(·,xk),

n∑
t=1

θitkX(·,xt)

〉
HX

=
1

n
θT
i KXHKXθj + γ θT

i KXθj

=
1

n
θT
i LX

(
LT

XHLX + nγ I
)
LT

Xθj

= δi,j .

As a result, f ∈ Ar is equivalent to

ΘLX

( 1
n
LT

XHLX + γI
)

︸ ︷︷ ︸
:=C

LT
XΘT = Ir,

where Θ :=
[
θ1, · · · ,θr

]T ∈ Rr×n.
Let V = LT

XΘT and consider the optimization problem in (13):

sup
f∈Ar

{
(1− λ)Depemp(f(X), Y )− λ

cy−1∑
y=0

Depemp(f(X), S|Y = y)

}

= sup
f∈Ar

{
(1− λ)

1

n2
∥ΘKXHLY ∥2F − λ

cy−1∑
y=0

1

n2
y

∥∥ΘKX [Y = y]HLSy

∥∥2
F

}

= sup
f∈Ar

{
(1− λ)

1

n2
Tr
{
ΘKXHKY HKXΘT

}
− λ

cy−1∑
y=0

1

n2
y

Tr
{
ΘKX [Y = y]HKSyHKX [Y = y]TΘT

}}
= max

V TCV =Ir
Tr
{
ΘLXBLT

XΘT
}

= max
V TCV =Ir

Tr
{
V TBV

}
(10)

where the second step is due to (3) and

B :=

(
(1− λ)

1

n2
LT

XHKY HLX − λ

cy−1∑
y=0

1

n2
y

LX [Y = y]THKS [Y = y]HLX [Y = y]

)

It is shown in [5] that an2 optimizer of (10) is any matrix U whose columns are eigenvectors corresponding to r largest
eigenvalues of generalized problem

Bu = τ Cu (11)

and the maximum value is the summation of r largest eigenvalues. Once U is determined, then, any Θ in which LT
XΘT = U

is optimal Θ (denoted by Θopt). Note that Θopt is not unique and has a general form of

ΘT =
(
LT

X

)†
U +Λ0, R(Λ0) ⊆ N

(
LT

X

)
.

However, setting Λ0 to zero would lead to minimum norm for Θ. Therefore, we opt Θopt = UTL†
X .

2Optimal V is not unique.
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