
SceneFun3D:

Fine-Grained Functionality and Affordance Understanding in 3D Scenes

Supplementary Material

Alexandros Delitzas1 Ayça Takmaz1 Federico Tombari2,3 Robert Sumner1

Marc Pollefeys1,4 Francis Engelmann1,2

1ETH Zurich 2Google 3TUM 4Microsoft

This supplemental complements the main paper, by pro-

viding details of our web annotation framework, additional

dataset statistics and data acquisition details. We also in-

clude implementation details for our baseline models and

discuss potential applications and limitations.

1. Annotation framework

To facilitate the data collection and semantic annotation on

large and high-resolution point clouds, we implement an an-

notation framework consisting of a number of interfaces.

Our annotation pipeline consists of three stages: 1) func-

tionality annotations, 2) natural language task descriptions

collection, 3) motion annotations. Each annotation stage is

followed by a corresponding verification step.

For the laser scan management interface and for storing

the annotations, we use React.js1 and MongoDB2. For the

annotation process, we develop 3D interactive interfaces us-

ing Three.js3 which is based on WebGL. Our interfaces can

run on a simple web browser.

To enable the semantic annotation of large and high-

resolution point clouds while keeping the computational re-

quirements low, we utilize an accelerated ray-casting algo-

rithm based on Bounding Volume Hierarchies (BVH) [5].

The 3D points are automatically grouped into recursive

bounding volumes constructing a KD-tree, as can be seen

in Fig. 1. As a result, spatial queries triggered by the anno-

tator’s clicks during annotation are significantly accelerated

by searching on the tree nodes in a top-down manner instead

of naively iterating across all the 3D points in the scene.

For each task, detailed instructions are provided to anno-

tators. The annotation interactive interfaces for functional-

ity annotation, natural language task description collection

and motion annotation can be seen in Figures 2, 3 and 4 re-

1https://react.dev
2https://www.mongodb.com
3https://threejs.org

spectively. The annotations are verified and refined by hu-

man verifiers. For verification, all the available annotations

for a scene are displayed at the interface and the human ver-

ifiers can choose to “edit” an existing annotation or “delete”

it.

2. The SceneFun3D dataset

2.1. Cropping the laser scans

We observe that the Faro laser scans may contain extrane-

ous points out of the indoor scene context due to transparent

surfaces, such as windows. This can significantly increase

the size of the 3D point cloud with points that are not use-

ful for our proposed tasks. To this end, we provide masks

to filter these points and keep only the main scene region.

Specifically, as a final step after we perform the registra-

tion described in Sec. 4.3 of the main paper, we utilize the

ARKit mesh reconstructions based on the available video

sequences as a reference to accurately crop the laser scans.

The algorithm that we use to process each laser scan can be

seen in Algorithm 1.

2.2. Constructing the scenes

To complement the main paper, we provide an overview

of the main steps performed to construct the scenes in

the SceneFun3D dataset in Fig. 5. Next, we utilize the

processed high-resolution laser scans in our annotation

pipeline.

2.3. Annotation statistics

Our work amounts to the total of 675h annotation time and

237h of verification time. Annotation took on average 57m

per scene (35m for functionality annotation, 10m for the

language descriptions collection and 12m for the 3D motion

annotations). Verification took on average 20m per scenes

(10m for functionalities, 5m for language descriptions and

5m for motions).

1



Figure 1. Our annotation interface utilizes an accelerated ray-casting algorithm where 3D points are grouped based on Bounding Volume

Hierarchies (BVH). This enables the annotation of large and high-resolution point clouds with minimum computational requirements.

Figure 2. Our interactive web interface for functionality annotation. The user explores the 3D scene with our intuitive interactive controls.

When the user detects a functional interactive element in the scene (denoted by the red-dashed circle in the figure), they first add the

corresponding affordance category (e.g., hook pull) and then use the mouse to select the points that belong to the corresponding affordance

mask. The brush size can be manually adjusted to facilitate the annotation of larger/smaller areas. During the annotation process, the user

can also view a video sequence of the scene (bottom right part).



Figure 3. Our interactive web interface for the collection of natural language task descriptions. The annotator selects a functionality

annotation from the menu on the right and adds a corresponding text instruction in the text box.

Algorithm 1: Cropping the laser scans

Input : laser point cloud P of N points, number of

the available ARKit mesh reconstructions

K for the scene, ARKit mesh

reconstructions {Mi}
K

i=1
, transformations

to register the laser point cloud in the

coordinate system of each ARKit mesh

reconstruction {Ti}
K

i=1

Output: Cropped laser point cloud P c

C ← initialize as a list of N elements

for j = 1, 2, ..., N do
C[j]← False

end

for i = 1, 2, ...,K do
Bi ← calculate the oriented bounding box of Mi

BP

i
← apply T−1

i
on Bi

for j = 1, 2, ..., N do

if P [j] is in BP

i
then

C[j]← True

end

end

P c ← filter P based on the mask C

return P c

2.4. Additional data statistics

In Fig. 6, we present the distribution of the affordance

categories in our dataset. On average, each scene comes

with 20.9 functionality annotations, 24.1 language task de-

scriptions (15.4 collected from human annotators and 8.7

rephrased with ChatGPT) and 20.1 motion annotations.

The average length of the language task descriptions is 7.9

words.

2.5. Natural language task description augmenta
tion

To augment our dataset, we rephrase the collected descrip-

tion providing the ChatGPT model gpt-3.5-turbo-instruct

with the following prompt: “Help me reword a sentence to

a different format but keep its meaning”. Below, we show

examples of the original language task descriptions (O) col-

lected with the help of human annotators and the rephrased

(R) ones that we obtain:

• O: Turn on the TV using the remote control.

• R: Use the remote control to turn on the TV.

• O: Adjust the volume of the stereo system.

• R: Modify the stereo system’s volume.

• O: Close the door.

• R: Shut the door.



Figure 4. Our interactive web interface for the collection of motion annotations. The annotator first selects a functionality annotation to add

motion parameters and then uses the helper tools to select the motion type (translational or rotational), axis of motion and motion origin

(only needed for rotation).

Laser data processing Registration and alignment

iPhone camera
pose refinement

High-res iPhone 3D
reconstructionLaser scans fusion

Global registration
with PredatorCombined laser scan

Local registration
with Multi-scale ICP

Result

High-resolution laser scan Posed RGB-D iPhone frames

Figure 5. Overview of the main steps performed to construct the scenes in the SceneFun3D dataset.

• O: Open the rightmost cabinet door of the TV stand.

• R: Open the TV stand’s rightmost cabinet door.

• O: Open the bottom drawer of the cabinet.

• R: Retrieve the contents from the bottom drawer of the

cabinet.

2.6. Additional annotation examples

Additional annotation examples are illustrated in Fig. 7.

3. Implementation details

3.1. Models for functionality segmentation

Mask3D-F. For the task of functionality segmentation we

modify the Mask3D [7] model, as described in the main

paper. Here, we provide implementation details to ease

reproducibility. We train for 1000 epochs on an NVIDIA

A100 GPU using AdamW [4] and a one-cycle learning rate

schedule with a maximal learning rate of 0.0001. We set

the batch size to 2 and train on 2 cm voxelization to re-

tain high-resolution details. We optimize each predicted

mask using Dice loss, as it is specifically designed to ad-

dress data imbalances. The overall training loss is formu-

lated as Lseg = λdiceLdice + λceLce, where we experimen-

tally set λdice = 5 and λce = 2. The transformer decoder

in our Mask3D-F pipeline starts with 80 instance queries.

We employ curriculum masking with an initial expansion

radius r0 = 0.1, a decay rate d = 0.5 and a decay interval

α = 200.



Figure 6. Distribution of affordance categories in the SceneFun3D dataset.

hook_turn

"Open the terrace door"

rotate

"Select the washing
machine program"

hook_pull

"Open top drawer
next to the oven"

hook_pull

"Open bottom drawer
next to the oven"

unplug

"Unplug the router
from the power outlet"

pinch_pull

"Open the cabinet door
below the router"

Figure 7. Additional examples on functionality annotations and natural language task descriptions.

SoftGroup-F. We also provide further details on our exper-

imental setup on the SoftGroup-F baseline. We train our

model for 1000 epochs using the Adam [3] optimizer and

a cosine annealing schedule, with an initial learning rate

of 0.002. The batch size is set to 2. We set the voxel

size and grouping bandwidth to 2 cm and 4 cm, respec-

tively. The backbone network is trained using the com-

bined loss Lbackbone = λm-diceLm-dice + λoffsetLoffset, where

we experimentally set λm-dice = 2 and λoffset = 1. We train

the whole network using the multi-mask loss Ltop-down =
λceLce + λdiceLdice + λscoreLscore, where λce = 1, λdice = 2
and λscore = 1. We also use curriculum masking with an

initial expansion radius r0 = 0.1, a decay rate d = 0.5 and

a decay interval α = 200.

LERF. We rely on the original implementation of LERF

based on NerfStudio [9]. We adapt the dataset loader for

ARKitScenes and optimize a language-embedded neural

implicit scene representation for each scene separately, us-

ing the default learning parameters of LERF. Once a scene

representation is optimized, we can query it with arbitrary

text queries. Since the language features originate from

large pre-trained visual language models (VLM), i.e., CLIP,

we do not require supervised learning. During inference, we

can directly query the scene with the CLIP-text-encoding

of the functional representations. The text prompts are per-

formed on a per-frame basis which yields a relevancy field.

This field is computed for each training frame and projected

onto the provided 3D point clouds for evaluation. The final

per-point relevancy scores are averaged over all views.

3.2. Models for taskdriven affordance grounding

OpenMask3D-F. OpenMask3D [8] is a 3D open-

vocabulary instance segmentation method. Given a 3D

reconstructed geometry and posed RGB-D images, Open-

Mask3D obtains a per-mask features representation of the

objects in the scene. In order to run OpenMask3D and

our OpenMask3D-F on scenes from the ARKitScenes [1]

dataset, we use the cropped Faro laser scans (which were

obtained as described in Sec. 2.1) as the 3D geometry, and

the low-resolution RGB-D images from the wide camera,



with resolution 256 × 192. We process 1 frame per each

60 frames. For obtaining OpenMask3D mask proposals

using the original Mask3D backbone, we use 100 queries,

whereas for OpenMask3D-F we use the masks predicted by

Mask3D-F, where we used 80 queries. Some sequences in

ARKitScenes were captured with varying device orienta-

tions, resulting in images that are rotated with respect to the

ground plane. For such sequences, we ensure that each im-

age is naturally oriented (which would improve the quality

of the CLIP features) by rotating the RGB-D images by 90◦,

180◦ or 270◦ depending on the camera orientation, prior to

running OpenMask3D feature extraction module. Once we

use description queries to retrieve object instances, we ac-

cept or reject proposals if the OpenMask3D embedding and

text CLIP embedding has a cosine similarity score higher

than 0.2 (note that this score does not correspond to an ab-

solute score for confidence) and was set empirically.

LERF. LERF [2] embeds language features into a radi-

ance field. For our experiments, we rely on the official

implementation using NerfStudio [9] and optimize a NeRF

representation with language-embedded features. Similar

to our experiments with OpenMask3D, we use the low-

resolution RGB-D images from the wide camera, with res-

olution 256× 192. To be consistent with our OpenMask3D

experimental procedure, we use 1 frame per each 60 frames

for our LERF experiments.

Evaluation. For evaluating task-driven affordance ground-

ing, we perform the following steps: For each scene, there

are one or more ground truth task description annotations,

such as “Open the bottom drawer of the wardrobe” and

“Turn on the ceiling light”. After obtaining an open-

vocabulary scene representation using the previously de-

scribed methods, we embed the annotated task descriptions

using a CLIP [6] text encoder, and for each scene, we re-

trieve scene parts that are closest to the text-embedding of

the descriptions annotated for that scene. We evaluate the

task-driven affordance grounding performance by comput-

ing AP , AP50 and AP25 metrics.

3.3. Models for 3D motion estimation

Mask3D-FM. As described in the main paper, we add three

linear projection heads to the Mask3D-F pipeline, which

use as input the query features to predict the motion pa-

rameters, i.e., motion type, motion axis and motion origin.

We parameterize the motion axis and motion origin as 3-

dim vectors. We use the weights of the trained Mask3D-

F model for initialization and further refine them for the

task of motion estimation. We use the same hyperparam-

eters as in Mask3D-F for training. Our loss is formu-

lated as L = Lseg + Lmotion, where Lmotion is defined as

Lmotion = λtypeLtype + λaxisLaxis + λoriginLorigin. We empiri-

cally set λmotion = 2 , λaxis = 14 and λorigin = 14.

4. Qualitative results on LERF

We also present qualitative results using the LERF model.

In Fig. 8 we visualize the response field of LERF on a train-

ing frame given a text query.

Figure 8. Response field of LERF [2]. Query is “Open the bottom

drawer.” Red means high response, blue low response.

5. Applications

Our work encourages research on a spectrum of potential

applications, including robotics and augmented reality.

5.1. Rendering virtual humans and avatars

Generating diverse and realistic human-scene interactions

is crucial in AR applications. Current approaches on this

task search for contact positions on the object surface in the

3D scene to synthesize physically possible interactions. By

providing accurate 3D affordance masks in high-resolution

3D scenes, we facilitate the generation of realistic human

grasps and human-object contact areas. In Fig. 9, we show

examples of humans interacting with the functional ele-

ments in scenes of our dataset.

5.2. Robotics

Having the ability to understand and localize visual affor-

dances is vital for robots to operate in dynamic and com-

plex environments. In many domains, such as assistive

robotics, humans often use natural language to command

"Open the door"

"Turn off the ceiling light"

Figure 9. Virtual human-scene interactions.



"Turn on the floor lamp" "Open the top left drawer of the cabinet"

Figure 10. Robot-scene interaction. The ability to detect func-

tional elements, enables a robot to perform scene interactions such

as turning on a light, or opening a drawer.

an embodied agent to accomplish complex tasks in a 3D in-

door environment. By building a large-scale dataset with

accurate masks of functional interactive elements and nat-

ural language descriptions of tasks that involve interacting

with them, we aid robotic agents in recognizing suitable ar-

eas for manipulation in the scene and following instructions

expressed in natural language. In Fig. 10 we show exam-

ples of a robotic agent interacting with scene elements to

achieve task-specific goals.

6. Limitations

Despite the large scale of our dataset, it might exhibit ge-

ographic biases. The design and 3D shape of the func-

tional interactive elements present differences among dif-

ferent countries and continents. Therefore, to increase the

diversity of our dataset and build more robust scene under-

standing methods it would be beneficial to capture addi-

tional 3D environments across the world. Furthermore, our

dataset comprises static scenes. Thus, it does not contain

information on the rigid movement and articulation of ob-

jects. Extending our pipeline to incorporate high-resolution

laser scans in multiple states will aid in more detailed and

realistic modeling of the interactions with the functional el-

ements.

References

[1] Gilad Baruch, Zhuoyuan Chen, Afshin Dehghan, Tal Dimry,

Yuri Feigin, Peter Fu, Thomas Gebauer, Brandon Joffe, Daniel

Kurz, Arik Schwartz, et al. ARKitScenes: A Diverse Real-

world Dataset for 3D Indoor Scene Understanding Using Mo-

bile RGB-D Data. International Conference on Neural Infor-

mation Processing Systems (NeurIPS), 2021. 5

[2] Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo

Kanazawa, and Matthew Tancik. LERF: Language Embedded

Radiance Fields. In International Conference on Computer

Vision (ICCV), 2023. 6

[3] Diederik P. Kingma and Jimmy Ba. Adam: A method

for stochastic optimization. In International Conference on

Learning Representations (ICLR), 2015. 5

[4] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. In International Conference on Learning Rep-

resentations (ICLR), 2019. 4

[5] Daniel Meister, Shinji Ogaki, Carsten Benthin, Michael

Doyle, Michael Guthe, and Jiri Bittner. A Survey on Bound-

ing Volume Hierarchies for Ray Tracing. Computer Graphics

Forum, 2021. 1

[6] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,

Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen

Krueger, and Ilya Sutskever. Learning Transferable Visual

Models From Natural Language Supervision. In International

Conference on Machine Learning (ICML), 2021. 6

[7] Jonas Schult, Francis Engelmann, Alexander Hermans, Or

Litany, Siyu Tang, and Bastian Leibe. Mask3D: Mask Trans-

former for 3D Semantic Instance Segmentation. In Interna-

tional Conference on Robotics and Automation (ICRA), 2023.

4

[8] Ayça Takmaz, Elisabetta Fedele, Robert W. Sumner, Marc

Pollefeys, Federico Tombari, and Francis Engelmann. Open-

Mask3D: Open-Vocabulary 3D Instance Segmentation. In

International Conference on Neural Information Processing

Systems (NeurIPS), 2023. 5

[9] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent

Yi, Justin Kerr, Terrance Wang, Alexander Kristoffersen, Jake

Austin, Kamyar Salahi, Abhik Ahuja, David McAllister, and

Angjoo Kanazawa. Nerfstudio: A modular framework for

neural radiance field development. In ACM SIGGRAPH,

2023. 5, 6


	. Annotation framework
	. The SceneFun3D dataset
	. Cropping the laser scans
	. Constructing the scenes
	. Annotation statistics
	. Additional data statistics
	. Natural language task description augmentation
	. Additional annotation examples

	. Implementation details
	. Models for functionality segmentation
	. Models for task-driven affordance grounding
	. Models for 3D motion estimation

	. Qualitative results on LERF
	. Applications
	. Rendering virtual humans and avatars
	. Robotics

	. Limitations

