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A. Proof of Theorem 1

Proof: We consider the scenario where the ray only inter-

sects with the plane once. The weight w2 is the deriva-

tive of the logistic sigmoid function scaled by a constant

factor | cos(θ)|, which is a bell-shaped function centered at

f(t∗) = 0 implying that the point t∗ is on the surface. Put it

in another way, the color weight w2 attains maximum value

when the point is on the surface, therefore w2 is unbiased.

With the ray truncation mechanism, if there are multiple

ray-plane intersections along a single ray, only the first in-

tersection is in effect. Therefore, it is also occlusion-aware.

B. Bias and Translucency Analysis of Stage 1

The density function σ1 in our Stage 1 coarse training is

neither unbiased nor fully opaque, but we select c = 5 for a

good balance. In fact, we can estimate the bias and translu-

cency. For points in front of the surface, the incident angle θ

between the ray and the surface normal is obtuse, so we re-

strict θ to the range of [91◦, 180◦]. Assuming s = 1000, by

setting c = 5, in theory, the offset width between 0.00161

and 0.00566 is obtained relative to the true zero level set,

indicating that the maximum relative bias is below 0.5%.

This error level is acceptable for most application scenarios.

Moreover, assuming s = 1000, the surface transparency in

the extreme case mentioned above is less than 0.001. When

a ray has a larger incident angle, its transparency becomes

even smaller, resulting in an almost opaque density σ1. As

a result, the weight function w1 is approximately occlusion-

aware. Thus, setting the constant c = 5 offers a good bal-

ance between occlusion-awareness and unbiasedness in the

first stage training.
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C. Discussion of MeshUDF

Unlike signed distance fields (SDFs), from which extracting

a mesh is extensively studied, extracting a mesh from un-

signed distance fields is still an actively developing research

field with several challenges, which can lead to sub-optimal

reconstruction results. MeshUDF [3] is a UDF-mesh ex-

traction method that has enjoyed considerable popularity,

yet it still contains some limitations. Figure 9 showcases

two common limitations of MeshUDF: the extracted mesh

exhibits a visible “staircase effect” and hole artifacts re-

sulting in a negative visual impact. “Staircase effect” and

holes are pervasive across the results of NeuralUDF [8],

NeUDF [7] and our method. To eliminate these artifacts,

we can use DoubleCoverUDF [4] for mesh extraction from

UDF in the future, but we use MeshUDF in this work for

fair comparisons.

NeuralUDF [8] NeUDF [7] Ours

Figure 9. The “staircase effect” and hole artifacts found in

extracted meshes using MeshUDF [3]. The first row shows

raw meshes that have visible “staircases” widely found in Neu-

ralUDF [8], NeUDF [7] and our method, all using MeshUDF. The

second row shows the hole artifacts found in extracted meshes.

These artifacts may negatively impact on visual effects.
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D. Implementation Details

The UDF network is an MLP, consisting of 8 hidden lay-

ers, each with 256 elements. We use skip connections after

every 4 hidden layers. The output of the UDF network is

a single value representing the predicted UDF and a 256-

dimensional feature vector used in the color network.

For the color network, we use another MLP with 4 hid-

den layers, each having 256 elements. We use the coarse-

to-fine strategy proposed by Park et al. [10] for position en-

coding, setting the maximum number of frequency bands

to 16 for the UDF network and 6 for the color network.

For background rendering, we use NeRF++ [14] for back-

ground prediction. During training, we use the Adam opti-

mizer [6] with a global learning rate of 5e-4. We sample 512

rays per batch and train our model for 250,000 iterations for

the first stage and another 50,000 iterations for the second

stage, making up a total of 300,000 iterations. We leverage

MeshUDF [3] to extract meshes from trained UDFs.

For the weights of each loss function term, we empiri-

cally set λ1 = 0.1, λ2 = 0.01, and λ3 = 0.001, although λ2

is occasionally set to 0.02, and λ3 is optional. The weight

λm for mask loss Lloss is set to 0.1 aligning with other

works [8, 11], if mask supervision is adopted.

E. More Ablation Studies

We conduct additional ablation studies in this section.

Figure 10. Ablation study on the usage of ReLU (orange) [2] ver-

sus softplus (blue) [1, 7] in the MLP output layer. The former is

non-differentiable at 0 and its gradient vanishes for negative input,

whereas the latter is differentiable everywhere. Using ReLU after

the output layer of the MLP, the network makes progress at the

early stage of training, but collapses after 40K iterations, leading

to a training loss reduction through the rendering of only back-

grounds. In contrast, softplus leads to correct learning of both ge-

ometry and color, and consistently decreases the training loss over

iterations.

Non-negativity. Ensuring that the computed distances in

the proposed method are non-negative is important, and can

be achieved by applying either ReLU [2] or softplus [1, 7]

to the MLP output. However, ReLU is not differentiable at

0 and has vanishing gradients for negative inputs, which can

make the network difficult to train. An ablation study con-

firms that training with ReLU only results in early progress,

but fails to learn a valid UDF later on. See Figure 10 for

details.

S-value loss. Although Ls is optional, it is still impor-

tant that the learned s is large enough so that the model has

better convergence, and the result is sharper. As shown in

Figure 11, there are cases where omitting Ls results in a

worse reconstruction result, as the Chamfer distances are

higher. However, the impact is negligible both in quantita-

tive metrics and qualitative comparisons, hinting at the op-

tional nature of Ls.

CD=0.891 CD=0.904

Reference Image w/ Ls w/o Ls

Figure 11. Qualitative and quantitative ablation study on the s-

value loss Ls. The visual impact and the quantitative impact are

both very small.

F. Complete Results

We present the remaining results on DeepFashion3D [15]

dataset in Figure 12 for UDFs and Figure 13 for recon-

structed models. The UDFs of NeuralUDF exhibit apparent

oscillation. The UDFs of NeUDF are nearly closed possi-

bly resulting in watertight models. In contrast, our learned

UDFs are closest to the ground truth.

NeuralUDF [8] performs poorly on some cases in Fig-

ure 13, possibly due to its complicated visibility indicator

function. SDF-based methods such as VolSDF [13] and

NeuS [11] produce closed or double-cover models, lead-

ing to large reconstruction loss. Note that the UDF-based

method NeUDF [7] also fails to learn open models in case

SS-D0. The reason is that the learned UDF of NeUDF is

usually nearly closed, so it is liable to generate watertight

models.

We also present the results on DTU [5] dataset and

BlendedMVS [12] in Figure 14. For DTU dataset where

quantitative comparisons are feasible, our Stage 2 optimiza-

tion generally improves the reconstruction results (mea-

sured by Chamfer distances) of NeUDF [7] by around 10%.

The reason is presented in the main text. For BlendedMVS

dataset, we encourage readers to focus on the “bear” data.

The brochure held by the bear (marked in red box) is an

open part of the model. NeuralUDF [8] and NeAT [9],
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Figure 12. Visualization of the learned UDFs on cross sections for

the remaining garments from DeepFashion3D.

both of which use SDF implicitly or explicitly, as explained

in the main text, fail to reconstruct the open brochure.

NeUDF [7] correctly reconstructs the brochure as a single-

layer open surface but with large holes. Our method can

generate a visually better open surface for such parts in real-

life captured data.

References

[1] Charles Dugas, Yoshua Bengio, François Bélisle, Claude
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Figure 13. The remaining qualitative comparisons with VolSDF [13], NeuS [11], NeAT [9] (with mask supervision), NeuralUDF [8] and

NeUDF [7] on the DeepFashion3D [15] dataset.
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Figure 14. Qualitative comparisons with NeAT [9], NeuralUDF [8] and NeUDF [7] on the DTU [5] dataset and BlendedMVS [12] dataset.
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