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1. Derivation of the Analytic Derivative
Consider the optimization problem that finds the distance to
the first surface intersection (zero level crossing) along the
ray from xi with direction di

δi(θ,xi,di) ∈ argminδ∈R δ (1)
subject to ϕSDF(xi + δdi;θ) = 0

δ ⩾ ϵ

for the small constant ϵ, to avoid trivial solutions. Assum-
ing δi exists, and noting that the inequality δ ⩾ ϵ is inactive,
then by Proposition 4.6 from Gould et al. [1] we can com-
pute the derivative as
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(2)

for any parameter t. For scalar A, denoted a, many of the
terms cancel out, simplifying the expression to
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= −a−1Ct (3)

where
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where the intersection point is xi+1 = xi + δidi and its
normal vector is ni+1 = d

dxϕSDF(xi+1). Then the required
derivatives are given by
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which amounts to implicit differentiation of ϕSDF = 0. For
ease of implementation, we define the function value of the

SDF as si = ϕSDF(xi + δidi;θ) and note that
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∴
dδi
dsi

= − 1

nT
i+1di

, (14)

where Eq. (14) follows from Eqs. (10) and (13). Using
this derivative with respect to the SDF outputs means that
PyTorch Autograd can handle backpropagation through the
SDF itself.

These derivatives work for any number of sequential re-
fractions, where the next direction vector is computed by
Snell’s Law
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where ηi is the refractive index of the material at
point xi + ϵdi (perturbed to be off the surface),
which is 1.0003 for air. This can be implemented
in PyTorch by defining an Autograd function, shown
in the code listing below, which allows PyTorch to
handle backpropagation through the SDF parameters.

Python Code

1 class DistToIntersection(torch.autograd.Function):
2 def forward(ctx, si, xi, di, nj, deltai):
3 ctx.save_for_backward(di, nj, deltai)
4 return deltai
5 def backward(ctx, grad_output):
6 di, nj, deltai = ctx.saved_tensors
7 return -grad_output / dot(nj, di),
8 -grad_output * nj / dot(nj, di),
9 -grad_output * deltai * nj / dot(nj, di),

10 None, None

Note that we do not backpropagate through the nor-
mal vectors, since this involves the computation of second
derivatives, which are very noisy and numerically unstable.
This is implemented by a stop gradient on the normal ten-
sors to remove them from the computation graph.

2. Comparison against SampleNeRFRO
We compare our approach with SampleNeRFRO [3] us-
ing Optical Ball. SampleNeRFRO, under the assumption
of known geometry and refractive index, employs a vox-
elization technique to discretize the scene, storing the re-
fractive index within each voxel. Subsequently, it relies on
the Eikonal equation [2] for computing the refracted ray
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Figure 1. Qualitative Comparison of View Synthesis Results on
Optical Ball. Our method (middle) demonstrates superior align-
ment with ground truth compared to SampleNeRFRO [3] (right).

paths. It is important to note that SampleNeRFRO, un-
like our method, does not explicitly account for reflection.
While SampleNeRFRO is capable of modeling refraction
to some extent, it is apparent that it falls short in deliver-
ing sharp and clear novel views. In contrast, our method
consistently generates visually plausible and more coher-
ent novel view results. Moreover, our method gains higher
PSNR than SampleNeRFRO (24.07 versus 19.07).

Table 1 provides a direct comparison between our pro-
posed model and the SampleNeRFRO approach, employ-
ing PSNR as the metric to assess the quality of novel view
synthesis. The results demonstrate that our model outper-
forms SampleNeRFRO across four datasets. A key dis-
tinction of our model is its ability to attain superior per-
formance without relying on known geometric or refractive
index. This is a notable enhancement compared to the Sam-
pleNeRFRO model, which necessitates such information to
perform piecewise-linear curved ray calculations as per the
Eikonal equation, referenced in [2].

Model ↑ PSNR
Optical Ball Bottle Ball Glass

SampleNeRFRO [3] 19.07 12.90 21.49 21.11

Ours 24.07 23.20 21.70 21.30

Table 1. Comparison with SampleNeRFRO. Our method achieves
higher performance across four datasets without the need for
known geometry or refractive index assumptions, unlike Sam-
pleNeRFRO [3] which relies on such information for curved ray
calculations based on the Eikonal equation [2].
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Figure 2. Refractive index search. We present search results from
four transparent datasets. We search for the refractive index that
enhances PSNR in novel views. Note that, this process demands
no extra training, as it relies solely on rendering images with the
pre-trained NeuS model while adjusting refractive indices.

3. Refractive Index Search
In addition to the search results showcased for Optical Ball
in the main paper, we provide results for four other datasets
in Figure 2. Our selection process involves identifying the
refractive index that optimizes the PSNR for novel views,
utilizing the pre-trained NeuS model. Notably, the refrac-
tive indices determined for the Bottle and Eclipse datasets
correspond with the ground-truth values. However, for the
Glass and Ball datasets, which are real-world datasets, the
ground-truth refractive indices remain unknown.
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