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(Supplementary Material)

1. Overview
In this supplementary material, we provide the implemen-
tation details in Sec.2. In Sec.3 we present the extensive
experiments on various datasets. More ablation studies are
also presented in Sec. 3.2 to demonstrate the effectiveness
of our design choice.

2. Implementation Details
Here we report the detailed settings and hyperparameters
used in PLGSLAM to achieve high-quality surface recon-
struction, accurate camera tracking and real-time perfor-
mance.

The truncation distance T is set to 6 cm in our method.
The coarse feature planes is employed with a resolution of
24 cm. We use a resolution of 6 cm. All feature planes have
32 channels, resulting in a 64-channel concatenated feature
input for the decoders. The decoders are two-layer MLPs
with 32 channels in the hidden layer. The dimension of the
geometric feature z is 15. ReLU activation function is used
for the hidden layer, and Tanh and Sigmoid are respectively
used for the output layers of TSDF and raw colors. We
use 16 bins for One-Blob encoding of each dimension. For
Replica [6] dataset, we sample N = 32 points for stratified
sampling and Nsurface = 8 points for importance sampling
on each ray. We use 200 iterations for first frame mapping.
We perform 10 optimization iterations for mapping and ran-
domly select 4000 rays for each iteration. For camera track-
ing, 2000 rays are chosen at random and 8 optimization it-
erations are performed. And for ScanNet [2] dataset, we set
N = 48 and Nsurface = 8. Also, we perform 30 optimiza-
tion iterations for both mapping and tracking in ScanNet
scenes. For the scenes in Apartment dataset [10], we sim-
ilarly set N = 48 and Nsurface = 8. For this dataset, We
perform 30 optimization iterations for mapping and track-
ing, and we randomly sample 5000 rays for each iteration.

We use different set of loss coefficients for mapping and
tracking. We set λfs = 5 , λsdfm = 200 ,λsdft = 10 ,
λsmooth = 0.01, λre = 5 , λnw = 5, λd = 0.1 , and λc = 5
. And during tracking, we set λfs = 10 , λsdfm = 200,

Figure 1. Visualization of different culling strategy applied on gt
mesh. Frustum+occlusion culling method removes occluded re-
gions inside the room which results in too many holes in mesh.
The frustum+occlusion+ virtual camera method could remove un-
wanted artefacts outside the room but preserve the completeness
of the mesh.

λsdft = 50 , λre = 10 , λnw = 10 , λd = 1, and λc = 5.
We allocate the mapping process every 4 input frames

and use a temporal window of W = 20 keyframes for jointly
optimizing the feature tri-planes, MLP decoders, and cam-
era poses of the selected keyframes. We use Adam [4]
for optimizing all learnable parameters of our method. We
present our progressive scene representation method in Al-
gorithm 1.

Once all input frames are processed, and for evaluation
purposes, we build a TSDF volume for each scene and use
the marching cubes algorithm [5] to obtain 3D meshes. We
use inverse distance weight to fuse our local scene represen-
tation into the entire mesh.

2.1. Evaluation

Culling Method. In previous NeRF-based SLAM
method, all of them use an extra mesh culling step be-
fore evaluating the reconstructed mesh. iMAP [7] and
NICE-SLAM [10] adopt a frustum culling strategy which
removes the mesh vertices outside any of the camera
frustum. This culling strategy remove the artifacts outside
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Algorithm 1 Our Progressive Scene Representation.

1: j ← 1; /∗ The first scene representation index∗/
2: p← 1; /∗ First camera pose index∗/
3: q ← 1; /∗Start with the first frames ∗/
4: {R, T}p..q ← 1; /∗ Initialize poses as identity∗/
5: θj ← InitializeSR(); /∗ Initialize the first local scene representation∗/
6: while q < P do
7: while m = 0;m < 200 do
8: Optimize (θj); /∗ Optimize the first local scene representation with the first frame∗/
9: m← m+ 1;

10: end
11: while {R, t}j < Boundj do
12: q ← q + 1;
13: {R, T}q ← {R, T}q−1; /∗ Append a pose at the end of the trajectory ∗/
14: Optimize({R, T}p..q, θj); /∗ Refine poses and local scene representation ∗/
15: end
16: if q < P then
17: j ← j + 1; /∗ A new scene representation index∗/
18: θj ← InitializeSR() /∗ Initialize a new local scene representation∗/
19: tj ← tq; /∗ Centered around the last pose∗/
20: p← p+ n; /∗ Stop considering the frames in last scene representation∗/
21: end if
22: Repeat until all frames are registered.
23: end

camera frustum but cannot remove artifacts inside camera
frustum. In NeuralRGBD [1] and ESLAM [3], they adopt
frustum+occlusion culling method. While this strategy
could effectively remove some artifacts, their overly
aggressive culling strategy results in many holes in the
culled mesh. Follow [8], We introduce a modification to
the culling strategy used for the quantitative evaluation of
the reconstruction accuracy, which leads to a fairer compar-
ison. We use the frustum+occlusion+virtul camera culling
method. This method simulates virtual camera views that
cover the occluded regions. We show the comparison of
our method with others in Fig. 5. Our method effectively
fills the holes generated by the previous culling strategy.

Evaluation Metrics. After mesh culling, we evaluate the
reconstructed mesh with a mixture of 3D (Accuracy, Com-
pletion and Completion Ratio) and 2D (Depth L1) metrics.
In Tab. 1, we present the 3D reconstruction metrics. We
first uniformly sample two point clouds P and Q from both
GT and reconstructed meshes, with |P | = |Q| = 200000.
Accuracy metric is defined as the average distance between
a point on GT mesh to its nearest point on reconstructed
mesh. The Completion metric is defined as the average dis-
tance between a point on reconstructed mesh to its nearest
point on GT mesh. The completion metric refers to the pro-
portion of the overall ground truth (GT) where the average
distance between a point on the reconstructed mesh and its
nearest point on the GT mesh is less than 5 cm.

Reconstruction Metrics Definition
Depth L1 1

N

∑
(|di − d∗i |)/di

Accuracy
∑

p∈P (minq∈Q ∥p− q∥) /|P |
Completion

∑
q∈Q (minp∈P ∥p− q∥) /|Q|

Completion Ratio
∑

q∈Q (minp∈P ∥p− q∥ < 0.05) /|Q|

Table 1. Definitions of scene reconstruction metrics used for eval-
uation of surface reconstruction quality.

For depth L1 metric, we render depth from N = 1000
virtual view of GT and reconstructed mesh. The virtual
views are sampled uniformly within the room. Views that
have unobserved points will be rejected and re-sampled.
Then depth L1 is defined as the average L1 difference be-
tween rendered GT depth and rendered depth.

3. Experimental Results
In this section, we conduct various experiments to show the
robustness of our method in different experimental settings
and to validate our architecture design choices.

3.1. Frame Loss Robustness

We simulate the frame loss on Replica[6] datasets. We ran-
domly remove some frames in these two datasets. We only
skip one frames for every interval, such as ID 20 to 22, ID
110 to 112. In Table 3, it can be seen that iMAP [7], NICE-
SLAM [10], eslam [3], [8] struggles to recover camera pose



Figure 2. We present our coarse-to-fine local scene representation method. We incorporate a coarse and a fine tri-planes to encode the
scene and concate the coarse and fine feature. Then we put them into the decoder to get the sdf and color.

room0 room1 room2 office0 office1 office2 office3 office4 Avg.

iMap [7]

Depth L1 [cm] 5.08 3.44 5.78 3.79 3.76 3.97 5.61 5.71 4.64
Acc. [cm] 4.01 3.04 3.84 3.34 3.34 4.06 4.20 4.34 3.62
Comp.[cm] 5.84 4.40 5.07 3.62 3.62 4.73 5.49 6.65 4.93
Comp. Ratio(%)[5cm] 78.34 85.85 79.40 83.59 88.45 79.73 73.90 74.77 80.50

NICE-SLAM [10]

Depth L1 [cm] 1.79 1.33 2.20 1.43 1.58 2.70 2.10 2.06 1.90
Acc. [cm] 2.44 2.10 2.17 1.85 1.56 3.28 3.01 2.54 2.37
Comp.[cm] 2.60 2.19 2.73 1.84 1.82 3.11 3.16 3.61 2.63
Comp. Ratio(%)[5cm] 91.81 93.56 91.48 94.93 94.11 88.27 87.68 87.23 91.13

Vox-Fusion[9]

Depth L1 [cm] 1.76 2.52 3.58 3.44 1.77 3.52 1.82 4.84 2.91
Acc. [cm] 1.77 1.51 2.23 1.63 1.44 2.09 2.33 2.02 1.88
Comp.[cm] 2.69 2.31 2.58 1.87 1.66 3.03 2.81 3.51 2.56
Comp. Ratio(%)[5cm] 92.03 92.47 90.13 93.86 94.40 88.94 89.10 86.53 90.93

Co-SLAM[8]

Depth L1 [cm] 1.05 0.85 2.37 1.24 1.48 1.86 1.66 1.54 1.51
Acc. [cm] 2.11 1.68 1.99 1.57 1.31 2.84 3.06 2.23 2.10
Comp.[cm] 2.02 1.81 1.96 1.56 1.59 2.43 2.72 2.52 2.08
Comp. Ratio(%)[5cm] 95.26 95.19 93.58 93.58 94.65 91.63 90.72 90.44 93.44

ESLAM[3]

Depth L1 [cm] 0.73 0.74 1.26 0.71 1.02 0.93 1.03 1.18 0.95
Acc. [cm] 2.45 2.44 1.70 1.48 1.60 2.55 2.38 2.06 2.08
Comp.[cm] 1.79 1.58 1.61 1.30 1.47 2.05 2.18 2.05 1.75
Comp. Ratio(%)[5cm] 97.29 96.80 96.89 98.45 96.04 96.14 95.33 94.53 96.43

Ours

Depth L1 [cm] 0.61 0.62 1.01 0.63 0.90 0.77 0.83 0.88 0.77
Acc. [cm] 2.23 2.21 1.51 1.41 1.42 2.21 2.02 1.80 1.79
Comp.[cm] 1.49 1.38 1.54 1.30 1.27 1.85 1.91 1.85 1.54
Comp. Ratio (%) [5cm] 98.39 97.51 98.52 98.44 97.77 97.84 96.98 97.03 97.87

Table 2. Per-scene quantitative results on Replica [6] dataset. Our method achieves consistently better reconstruction in comparison to
iMAP [7], NICE-SLAM [10], Vox-FUsion [9], Co-SLAM [8], ESLAM [3].

and scene geometry. Their camera tracking accuracy drop
dramatically. In contrast, our method perform better robust-
ness compared with existing methods.

3.2. Ablation Study

In this section, we provide more detailed ablation studies
of our method. Our experimental results demonstrate the
effectiveness of our method. The joint scene representa-



Figure 3. Qualitative comparison of our proposed PLGSLAM method’s surface reconstruction and localization accuracy with existing
NeRF-based dense visual SLAM methods, NICE-SLAM [10], Co-SLAM [8], and ESLAM [3] on the replica dataset [? ] with frame loss
and without frame loss. The region outlined on the image is marked in red to signify lower predictive accuracy, in green to signify higher
accuracy.

tion with tri-planes and MLP significantly improves surface
reconstruction accuracy, the adoption of a single network
for the entire scene enhances pose estimation and recon-
struction metrics, and the inclusion of local-to-global bun-
dle adjustment substantially improves robustness and accu-
racy in camera tracking. The results demonstrate that our
method yields more accurate, smooth, and true-to-reality re-
constructions.The detailed experimental results is shown in
Tab. 4.

3.3. Extensive Experiments

The extensive experiments show that our PLGSLAM
method performs well on different datasets. Specifically,
on the Replica dataset, our view synthesis results surpass
those of NICE-SLAM, showing that our approach creates
more accurate and realistic visualizations. Additionally,
on the apartment dataset, our PLGSLAM method outper-
forms other existing NeRF-based SLAM system such as
Co-SLAM and ESLAM, proving its superior surface recon-
struction ability.

Methods Metrics Room0* Room0

iMAP* [7] RMSE[m] 0.315 0.0552
Mean[m] 0.247 0.0353

NICE-SLAM [10] RMSE[m] 0.183 0.0223
Mean[m] 0.126 0.0174

Co-SLAM [8] RMSE[m] 0.033 0.0072
Mean[m] 0.023 0.0083

ESLAM [3] RMSE[m] 0.045 0.0065
Mean[m] 0.018 0.0072

Ours RMSE[m] 0.030 0.0060
Mean[m] 0.020 0.0067

Table 3. Camera tracking results on Replica [6] dataset with
frame loss. Our method achieves better camera tracking results
in comparison to iMAP [7], NICE-SLAM [10], Vox-Fusion [9],
Co-SLAM [8], ESLAM [3] in frame loss experiments.
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