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Supplementary Material

A. Proofs
A.1. Lower Bound of RLHF Objective

In Lemma A.1, we prove that the objective in Equation (6) is a lower bound of the RLHF objective in Equation (5).

Lemma A.1. Given two diffusion models πθ, πref , a prompt distribution p(c), a reward function r(x0, c), and a constant
β > 0, we have:

Ec∼p(c)

[
Ex0∼πθ(x0|c)[r(x0, c)]− βKL[πθ(x0|c)||πref(x0|c)]

]
(22)

≥ Ec∼p(c)

[
Ex0∼πθ(x0|c)[r(x0, c)]− βKL[πθ(x̄|c)||πref(x̄|c)]

]
, (23)

where x̄ := x0:T is the full denoising trajectory, and πθ, πref are defined as:

π(x0|c) =
∫

π(x0:T |c) dx1:T =

∫
p(xT )

T∏
t=1

π(xt−1|xt, c) dx1:T . (24)

Proof. It suffices to show that for any c,

KL[πθ(x̄|c)||πref(x̄|c)] ≥ KL[πθ(x0|c)||πref(x0|c)]. (25)

This can be proved similarly as the data processing inequality. We provide the proof below.

KL[πθ(x̄|c)||πref(x̄|c)] = Eπθ(x0:T |c)

[
log

πθ(x0:T |c)
πref(x0:T |c)

]
(26)

= Eπθ(x0:T |c)

[
log

πθ(x0|c)
πref(x0|c)

+ log
πθ(x1:T |x0, c)

πref(x1:T |x0, c)

]
(27)

= Eπθ(x0|c)

[
log

πθ(x0|c)
πref(x0|c)

]
+ Eπθ(x0|c)

[
Eπθ(x1:T |x0,c)

[
log

πθ(x1:T |x0, c)

πref(x1:T |x0, c)

]]
(28)

= KL[πθ(x0|c)||πref(x0|c)] + Eπθ(x0|c)[KL[πθ(x1:T |x0, c)||πref(x1:T |x0, c)]] (29)
≥ KL[πθ(x0|c)||πref(x0|c)]. (30)



A.2. Maximizer of the Lower Bound of RLHF Objective

In Lemma A.2, we prove that Equation (7) maximizes the objective in Equation (6), a lower bound of the RLHF objective.

Lemma A.2. Define

πθ⋆(x̄|c) = 1

Z(c)
πref(x̄|c) exp

(
1

β
r(x0, c)

)
, (31)

where

Z(c) =

∫
πref(x̄|c) exp

(
1

β
r(x0, c)

)
dx̄ (32)

is the partition function. Then πθ⋆ is the optimal solution to the following maximization problem:

max
πθ

Ec∼p(c)

[
Ex0∼πθ(x0|c)[r(x0, c)]− βKL[πθ(x̄|c)||πref(x̄|c)]

]
. (33)

Proof. We provide the proof below, which is inspired by DPO [35].

max
πθ

Ec∼p(c)

[
Ex0∼πθ(x0|c)[r(x0, c)]− βKL[πθ(x̄|c)||πref(x̄|c)]

]
(34)

= max
πθ

Ec∼p(c)

[
Ex̄∼πθ(x̄|c)[r(x0, c)]− βKL[πθ(x̄|c)||πref(x̄|c)]

]
(35)

= max
πθ

Ec∼p(c)Ex̄∼πθ(x̄|c)

[
r(x0, c)− β log

πθ(x̄|c)
πref(x̄|c)

]
(36)

= min
πθ

Ec∼p(c)Ex̄∼πθ(x̄|c)

[
log

πθ(x̄|c)
πref(x̄|c)

− 1

β
r(x0, c)

]
(37)

= min
πθ

Ec∼p(c)Ex̄∼πθ(x̄|c)

log πθ(x̄|c)
πref(x̄|c) exp

(
1
β r(x0, c)

)
 (38)

= min
πθ

Ec∼p(c)Ex̄∼πθ(x̄|c)

[
log

πθ(x̄|c)
πθ⋆(x̄|c)Z(c)

]
(39)

= min
πθ

Ec∼p(c)

[
Ex̄∼πθ(x̄|c)

[
log

πθ(x̄|c)
πθ⋆(x̄|c)

]
− logZ(c)

]
(40)

= min
πθ

Ec∼p(c)[KL[πθ(x̄|c)||πθ⋆(x̄|c)]− logZ(c)] (41)

= min
πθ

Ec∼p(c)[KL[πθ(x̄|c)||πθ⋆(x̄|c)]] . (42)

Since KL[πθ(x̄|c)||πθ⋆(x̄|c)] ≥ 0, and KL[πθ(x̄|c)||πθ⋆(x̄|c)] = 0 if and only if πθ(x̄|c) = πθ⋆(x̄|c), we conclude that the
optimal solution to Equation (33) is πθ(x̄|c) = πθ⋆(x̄|c) for all c.



A.3. Necessary and Sufficient Conditions for the Optimal Solution

In Lemma A.3, we provide theoretical justification for our proposed RDP objective in Equation (14).

Lemma A.3.

πθ(x̄|c) = πθ⋆(x̄|c), ∀x̄, c (43)

⇐⇒ log
πθ(x̄

a|c)
πref(x̄a|c) − log

πθ(x̄
b|c)

πref(x̄b|c) =
r(xa

0 , c)− r(xb
0, c)

β
, ∀x̄a, x̄b, c. (44)

Proof. We have shown “ =⇒ ” in the main text. We provide the proof for “⇐= ” below.
Equation (44) implies that

log
πθ(x̄|c)
πref(x̄|c)

− 1

β
r(x0, c) (45)

is a constant w.r.t. x̄. Therefore, we can write Equation (45) as a function of c alone:

log
πθ(x̄|c)
πref(x̄|c)

− 1

β
r(x0, c) = f(c). (46)

Hence,

πθ(x̄|c) = πref(x̄|c) exp
(
1

β
r(x0, c)

)
exp(f(c)) . (47)

It suffices to show that

exp(f(c)) =
1

Z(c)
, ∀c. (48)

This follows from the fact that the probability density function πθ(x̄|c) must satisfy:

1 =

∫
πθ(x̄|c) dx̄ (49)

=

∫
πref(x̄|c) exp

(
1

β
r(x0, c)

)
exp(f(c)) dx̄ (50)

= exp(f(c))

∫
πref(x̄|c) exp

(
1

β
r(x0, c)

)
dx̄ (51)

= exp(f(c))Z(c). (52)



B. Instability of DDPO in Large-Scale Reward Finetuning
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Figure 9. Analysis of the instability of DDPO in large-scale training. We plot the training curves of PRDP and DDPO on the large-scale
Human Preference Dataset v2 (Left) and the small-scale Common Animals (Right). PRDP outperforms DDPO in the small-scale setting,
and maintains stability in the large-scale setting where DDPO fails. Our ablation study suggests that the per-prompt reward normalization
in DDPO is key to its stability, and the inability to perform such normalization in the large-scale setting likely causes its failure.

Figure 9 shows the training curve of PRDP and DDPO [4], where the reward model is HPSv2 [53]. From Figure 9 (Left),
we observe that when trained on the large-scale Human Preference Dataset v2 (HPD v2) [53], DDPO fails to stably optimize
the reward. We conjecture that this is because the per-prompt reward normalization is rarely enabled in the large-scale setting,
since each prompt can only be seen a few times. Specifically, in each epoch, DDPO randomly samples 512 prompts, so on
average, each prompt can be seen 512×1000/100K ≈ 5 times. This is insufficient to obtain a good estimate of the per-prompt
expected reward. In this case, DDPO will compute a prompt-agnostic expected reward, by averaging the rewards across all
512 prompts. To verify that such prompt-agnostic reward normalization causes training instability, we conduct an ablation
study of DDPO in our small-scale setting with 45 training prompts. As shown in Figure 9 (Right), DDPO without per-prompt
reward normalization is unstable even in the small-scale setting, suggesting that the inability to perform per-prompt reward
normalization can be a limiting factor in scaling DDPO to large prompt datasets. In contrast to DDPO, PRDP can steadily
improve the reward score and maintain stability in both small-scale and large-scale settings.



C. Effect of KL Regularization
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Figure 10. Effect of KL regularization on optimizing aesthetic score. DDPO and PRDP are finetuned from Stable Diffusion v1.4 on 45
prompts of common animal names. Evaluation is performed on the same set of prompts. In addition to aesthetic score, we report HPSv2
and PickScore which reflect text-image alignment but are not used during training. Samples within each column are generated from the
prompt shown on top, using the same random seed. PRDP with a large KL weight β can alleviate the reward over-optimization problem
encountered by DDPO, significantly improving the aesthetic quality over Stable Diffusion while maintaining text-image alignment.

In contrast to DDPO [4] which only cares about maximizing the reward, PRDP is formulated with a KL regularization,
allowing us to alleviate the problem of reward over-optimization by increasing the KL weight β. We demonstrate the effect
of KL regularization in Figure 10. Here, the reward used for training is the aesthetic score given by the LAION aesthetic
predictor. It only takes images as input, and therefore ignores the text-image alignment. We finetune DDPO and PRDP from
Stable Diffusion v1.4 [37] for 250 epochs on 45 training prompts of common animal names as used in DDPO, with 512
reward queries in each epoch. For evaluation, we additionally use HPSv2 [53] and PickScore [22] that reflect text-image
alignment. The reported reward scores are averaged over 64 random samples per training prompt, using the same random
seed for Stable Diffusion v1.4, DDPO, and PRDP.

We observe that DDPO, without KL regularization, is prone to reward over-optimization. It ignores the text prompt and
generates similar images for all prompts. PRDP with a small KL weight (e.g., β = 0.1) has the same problem, but achieves
higher reward scores than DDPO, showing a better reward maximization capability. As the KL weight increases, PRDP is
able to better preserve the text-image alignment, indicated by the increase in HPSv2 and PickScore. With β = 10, PRDP
significantly improves the aesthetic score over Stable Diffusion v1.4 without sacrificing text-image alignment.



D. Large-Scale Multi-Reward Finetuning

Table 3. Reward score comparison on unseen prompts. We use a weighted combi-
nation of rewards: PickScore = 10, HPSv2 = 2, Aesthetic = 0.05. PRDP is finetuned
from Stable Diffusion v1.4 on the training set prompts of Pick-a-Pic v1 dataset.

Pick-a-Pic v1
Test Set

HPD v2
Animation

HPD v2
Concept Art

HPD v2
Painting

HPD v2
Photo

SD v1.4 2.888 2.927 2.877 2.883 2.984
PRDP 3.208 3.296 3.264 3.274 3.214

In this section, we provide additional results for our large-scale multi-reward finetuning experiment. Following DRaFT [6],
we use a weighted combination of rewards: PickScore = 10, HPSv2 = 2, Aesthetic = 0.05. We finetune Stable Diffusion
v1.4 [37] on the training set prompts of Pick-a-Pic v1 dataset [22]. We evaluate our finetuned model on a variety of unseen
prompts, including 500 prompts from the Pick-a-Pic v1 test set, and 800 prompts from each of the four benchmark categories
of the Human Preference Dataset v2 (HPD v2) [53], namely animation, concept art, painting, and photo. Table 3 reports
the reward scores before and after finetuning. The reward scores are averaged over 64 random samples per prompt, using
the same random seed for Stable Diffusion v1.4 and PRDP. We further show generation samples for each test prompt set in
Figures 11 to 15. As can be seen, PRDP significantly improves generation quality across all five prompt sets.

E. Hyperparameters

Table 4. PRDP training hyperparameters.

Name Symbol Small-Scale
Finetuning

Large-Scale
Finetuning

Large-Scale Multi-Reward
Finetuning

Training epochs E 100 1000 1000
Gradient updates per epoch K 10 1 1
Prompts per epoch N 32 64 64
Images per prompt B 16 8 8
KL weight β 3×10−5 3×10−6 3×10−5

DDPM steps T 50 50 50
Stepwise clipping range ϵ 1×10−6 1×10−4 1×10−4

Classifier-free guidance scale — 5.0 5.0 5.0
Optimizer — AdamW AdamW AdamW
Gradient clipping — 1.0 1.0 1.0
Learning rate — 1×10−5 7×10−6 1×10−5

Weight decay — 1×10−4 1×10−4 1×10−4



F. Effect of Clipping

Table 5. Effect of clipping on training stability.

w/o Clipping w/ Clipping

DDPO
Small scale: Unstable
Large scale: Unstable

Small scale: Stable
Large scale: Unstable

PRDP
Small scale: Unstable
Large scale: Unstable

Small scale: Stable
Large scale: Stable

Table 5 summarizes the effect of clipping on the training stability of both DDPO [4] and PRDP. For DDPO, we use PPO-
based clipping [42], while for PRDP, we use the proximal updates described in Section 3.3. We observe that clipping is key to
stability of small-scale training, whereas using the PRDP objective and clipping are both indispensable for achieving stability
in large-scale training.

G. Jax Implementation of PRDP Loss

1 import jax
2 import jax.numpy as jnp
3

4

5 def prdp_loss(
6 log_probs: jax.Array, # (B, T)
7 log_probs_old: jax.Array, # (B, T)
8 log_probs_ref: jax.Array, # (B, T)
9 rewards: jax.Array, # (B,)

10 clip_range: float,
11 kl_weight: float,
12 ) -> jax.Array:
13 """Computes PRDP loss for a batch of denoising trajectories with the same text prompt.
14

15 Args:
16 log_probs: Log probs of the denoising trajectories under pi_theta.
17 log_probs_old: Log probs of the denoising trajectories under pi_theta_old.
18 log_probs_ref: Log probs of the denoising trajectories under pi_ref.
19 rewards: Rewards of the generated clean images.
20 clip_range: Stepwise clipping range (epsilon).
21 kl_weight: KL weight (beta).
22

23 Returns:
24 loss: The PRDP loss.
25 """
26 log_ratios = log_probs - log_probs_ref
27 log_ratios_old = log_probs_old - log_probs_ref
28 clipped_log_ratios = jnp.clip(
29 log_ratios, log_ratios_old - clip_range, log_ratios_old + clip_range
30 )
31

32 log_ratios = jnp.mean(log_ratios, axis=-1)
33 clipped_log_ratios = jnp.mean(clipped_log_ratios, axis=-1)
34

35 log_ratio_diffs = log_ratios[:, None] - log_ratios
36 clipped_log_ratio_diffs = clipped_log_ratios[:, None] - clipped_log_ratios
37 reward_diffs = rewards[:, None] - rewards
38

39 mse_loss = (log_ratio_diffs - reward_diffs / kl_weight) ** 2
40 clipped_mse_loss = (clipped_log_ratio_diffs - reward_diffs / kl_weight) ** 2
41 loss = jnp.maximum(mse_loss, clipped_mse_loss)
42 loss = jnp.mean(loss, where=reward_diffs > 0)
43

44 return loss
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Figure 11. Generation samples on unseen prompts from the Pick-a-Pic v1 test set. PRDP is finetuned from Stable Diffusion v1.4
on the training set prompts of Pick-a-Pic v1 dataset, using a weighted combination of rewards: PickScore = 10, HPSv2 = 2, Aesthetic
= 0.05. For each prompt, the generation sample from Stable Diffusion v1.4 and PRDP use the same random seed.
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Figure 12. Generation samples on unseen prompts from the HPD v2 animation benchmark. PRDP is finetuned from Stable Diffusion
v1.4 on the training set prompts of Pick-a-Pic v1 dataset, using a weighted combination of rewards: PickScore = 10, HPSv2 = 2, Aesthetic
= 0.05. For each prompt, the generation sample from Stable Diffusion v1.4 and PRDP use the same random seed.
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The image is a 
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A Halloween-themed 
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Figure 13. Generation samples on unseen prompts from the HPD v2 concept art benchmark. PRDP is finetuned from Stable Diffusion
v1.4 on the training set prompts of Pick-a-Pic v1 dataset, using a weighted combination of rewards: PickScore = 10, HPSv2 = 2, Aesthetic
= 0.05. For each prompt, the generation sample from Stable Diffusion v1.4 and PRDP use the same random seed.
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willow trees, and arch 
bridges set against a 
blue background.

A digital painting of a 
blue-skinned wizard 
with intricate and 
elegant details, 
created by multiple 
artists and posted on 
Artstation.

A train crosses a 
trestle bridge in the 
mountains in an 
optimistic and vibrant 
illustration.

A solar eclipse is 
depicted over a field 
of grass and flowers 
with a small forest in 
the distance, as a 
matte painting on Art 
Station by Simon 
Stalenhag.
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Figure 14. Generation samples on unseen prompts from the HPD v2 painting benchmark. PRDP is finetuned from Stable Diffusion
v1.4 on the training set prompts of Pick-a-Pic v1 dataset, using a weighted combination of rewards: PickScore = 10, HPSv2 = 2, Aesthetic
= 0.05. For each prompt, the generation sample from Stable Diffusion v1.4 and PRDP use the same random seed.



A small elephant toy 
sitting inside of a 
wooden car.

A wooden outhouse 
sitting in the grass 
near trees.

a man on a 
motorcycle that is in 
some grass

Two kittens curled up 
in a white sheet that 
looks soft.

a vase with a flower 
growing very well

A man standing in 
front of a bunch of 
doughnuts.

A wreath with a red 
bow on it hanging on 
a white door.
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A dim lit room 
consisting of many 
objects put together.

A motorcycle parked 
on a stone cobble 
road, in the sun.

A car sitting in the 
middle of the grass in 
the rain.

a black cat that is 
sitting in a sink

A TV sitting on top of 
a wooden stand.

Sun shining through 
the blinds into a white 
bathroom.

a couple of horse that 
are eating some grass
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Ornate archway inset 
with matching 
fireplace in room.

a cat laying on the 
floor of a kitchen

A TV sitting on top of 
a counter inside of a 
store.

a black and white 
photo with a vase and 
flower coming out of 
it

A man wearing a 
black neck tie and 
glasses.

The motorcycle is 
tilting as he turns 
through a cave.

A table topped with  
lots of food and 
drinks.

St
ab

le
 D

iff
us

io
n 

v1
.4

PR
DP

Figure 15. Generation samples on unseen prompts from the HPD v2 photo benchmark. PRDP is finetuned from Stable Diffusion v1.4
on the training set prompts of Pick-a-Pic v1 dataset, using a weighted combination of rewards: PickScore = 10, HPSv2 = 2, Aesthetic
= 0.05. For each prompt, the generation sample from Stable Diffusion v1.4 and PRDP use the same random seed.


