
Portrait4D: Learning One-Shot 4D Head Avatar Synthesis using Synthetic Data
—— Supplementary Material

Yu Deng Duomin Wang Xiaohang Ren Xingyu Chen Baoyuan Wang
Xiaobing.AI

https://yudeng.github.io/Portrait4D/

via Surface Field via Nearest Vertices’ Deformations

m(α, β, γ) m(α, β, γn) m(α, β, γn) m(0, 0, γca)

xn−  
x γneck α, β, γ− xh 

Figure I. Overview of the part-wise 3D deformation field D in GenHead. We first derive deformation caused by neck pose via the Surface
Field approach [2]. The deformation of an arbitrary 3D point is obtained via tri-linear interpolation between those of pre-defined voxel
grids. Then, we eliminate the deformation caused by shape and expression variations, via weighted deformations of its nearest vertices on
the FLAME mesh. Here, we only show the derivation of the head region deformation for an illustration.

I. Overview

We first present more implementation details in Sec. II, in-
cluding those of GenHead, 4D data synthesis, and the one-
shot 4D head reconstruction pipeline. Then, we provide
evaluations of GenHead and additional results of one-shot
4D head synthesis in Sec. III. Finally, we discuss limitations
and ethics consideration in Sec. IV.

II. More Implementation Details

II.1. Part-wise Generative Head Model

In this section, we describe more details about the GenHead
model, including the shape-aware canonical triplane gener-
ator, the part-wise deformation field, the image rendering
process, and the learning strategy. We also provide details
about data preprocessing and training.

Shape-aware canonical triplane generator. As de-
scribed in the main paper, our canonical tri-plane genera-
tor Gca also takes the shape code α as input for synthesiz-
ing shape-related canonical appearance. To achieve this, we

simply concatenate α with the random noise z, and send
them together into the mapping network of Gca’s Style-
GAN2 backbone. Considering that the shape and appear-
ance only have weak correlations, we randomly replace α
sent into the mapping net with an arbitrary shape code at a
possibility of 50% during training to avoid overfitting.

Part-wise 3D deformation field. The part-wise 3D de-
formation field D produces observation-to-canonical defor-
mations [∆xh,∆xp] for a 3D point x, for modeling shape
deformations, as well as animations of neck, face, eyes, and
mouth. Illustrations are in Fig. I and II and we describe the
details below.

We first calculate the deformation caused by neck joint
rotation γneck. We leverage Surface Field (SF) proposed by
[2], which derives the canonical coordinate xn via

xn = tnx · [u, v, w]⊺ + ⟨x− tx · [u, v, w]⊺,ntx⟩nn
tx , (I)

where tx is x’s nearest triangle on the mesh m(α,β,γ),
[u, v, w] is the barycentric coordinates of x’s projection
onto the triangle, and ntx is the surface normal. tnx and
nn

tx are the corresponding triangle and surface normal on
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Figure II. We further derive part-region deformations using the
cropped-out eye balls and lip meshes, to better deal with motions
of eyes and teeth.

a mesh m(α,β,γn) with canonical neck pose, that is,
γn = [0,γjaw,γeye]. In practice, we avoid direct SF calcu-
lation for every 3D point. Instead, we introduce pre-defined
low-resolution voxel grids for SF computation, and approxi-
mate the deformation of an arbitrary 3D point with tri-linear
interpolation of those of pre-defined voxel grids, as shown
in Fig. I. This approximation largely reduces the computa-
tional cost produced by nearest triangle search. Moreover,
the tri-linear interpolation serves as a low-pass filter which
largely alleviates the discontinuity of deformations around
hairs that have contact with both the face and the shoulder.

After eliminating the neck pose, we tackle the deforma-
tion produced by α, β, and γjaw to deform the 3D point
to the head canonical space. Specifically, for the 3D point
xn after neck pose canonicalization, we search for its near-
est vertex vn on the mesh m(α,β,γn) and further obtain
the one-ring neighborhood N (vn) of the vertex. We then
calculate the deformation of xn via weighted summation of
the offsets produced by the neighborhood:

∆(xn) =
1

Z

∑
vi∈N (vn)

ωi · (vca
i − vi), (II)

where vca
i denotes vi’s corresponding vertex on mesh

m(0,0,γca), ωi = 1/∥xn − vi∥2 is the weighting coef-
ficient proportional to the inverse distance between the 3D
point and the vertices, and Z is a normalizing scalar. The
coordinate xh in the head canonical space can then be ob-
tained via xh = ∆(xn) + xn. That is, the observation-to-
head-canonical deformation ∆xh = ∆(xn) + xn − x.

Finally, we tackle the eye balls’ rotation as well as rela-
tive movements between lips and teeth. As shown in Fig. II,
we crop out the eye region and lip region from the FLAME
mesh. For the eye region, we search for the closest ver-
tices on the eye balls for the 3D point xn, and follow the
same procedure as described in Eq. (II) to obtain canoni-
cal point xp1. For teeth, we notice that their motions are
related only to the jaw movements [12]. Therefore, we
derive their deformation via an expressionless lip-region
mesh m(α,0,γn). We use the offsets between the ver-
tices on this lip mesh and the corresponding vertices on the

canonical mesh m(0,0,γca) to derive the deformation via
Eq. (II), and obtain the canonical point xp2. Therefore, the
observation-to-part-canonical deformation ∆xp = xp1−x
or xp2 − x, where we use xp1 − x for points inside the
bounding boxes of the eye balls, and xp2 − x for the re-
mainings.

Image rendering. Given the part-wise deformations
[∆xh,∆xp], we can obtain the corresponding features fh

and fp from the triplanes Th and Tp, respectively. An
MLP then decodes the features to their radiance (σh, ch)
and (σp, cp), where c· ∈ R32 is a color feature and its first
three dimensions correspond to RGB, as in [4]. We per-
form volume rendering [14, 18] to obtain two feature maps
Ih and Ip via the following equation:

I(r) =

N∑
i=1

ti(1− exp(−σiδi))ci, ti = exp(−
i−1∑
j=1

σjδj),

(III)
where i is the point index along ray r from near to far, and
δ denotes adjacent point distance. We blend the two feature
maps to a single foreground feature map If via the rendered
FLAME mask at the same view point:

If = Ih ⊙ (1−Mp) + Ip ⊙Mp, (IV)

where ⊙ is element-wise multiplication and Mp is the mask
of eyes and inner mouth obtained via rasterization of the
FLAME mesh m(α,β,γ). Similarly, we can obtain the
foreground opacity image Iopa by setting ci of all points to 1
in Eq. (III). Then, we fused the foreground with a 2D back-
ground feature map Ibg generated by another StyleGAN2:

Ilr = If ⊙ Iopa + Ibg ⊙ (1− Iopa). (V)

Finally, the obtained low-resolution feature map Ilr is sent
into a 2D super-resolution module [4] to synthesize the final
image I .

Learning strategy. We adopt the recent 3D-aware GAN
training framework [4, 22] to learn GenHead using monoc-
ular real images. During training, we randomly sample
(α,β,γ) and camera pose θ extracted from the training
set, as well as noise code z from normal distribution, and
enforce the GenHead model G to generate a corresponding
image I . An extra discriminator D then takes the gener-
ated image I as well as a real one Ī from the training set to
conduct image-level adversarial learning [13, 15]:

Ladv = Eα,β,γ,z,θ[f(D(Icat))]

+ EĪ∼preal
[f(−D(Īcat)) + λ∥∇D(Īcat)∥2],

(VI)

where f(u) = log(1 + exp (u)) is the Softplus function
and |∇D(·))∥2 denotes the R1 regularization [17]. Icat =



[I, Ilr, Iopa, U ] is a concatenation of the synthesized images
I , Ilr, the opacity image Iopa, and a rasterized correspon-
dence map from m(α,β,γ) similarly as in [22]. Īcat is
the corresponding concatenation of Icat, where Īopa is pre-
dicted by [6] and Ū is obtained from a reconstructed mesh
using [3, 10] and an extra landmark-based optimization
step. The additional concatenation of the opacity images
and the correspondence maps help with better foreground-
background separation and more accurate deformation con-
trol.

Besides, we introduce a part-region density regulariza-
tion to encourage the GenHead to leverage Tp instead of Th

for generating eyes and inner mouth:

Lpart =
∑

Π(x)∈Mp

σh(x), (VII)

where Π(x) is the 2D projection of point x in the obser-
vation space, and σh is the corresponding volume density
obtained from Th.

Data preprocessing. We re-align the FFHQ [15] dataset
to ensure that the heads have nearly identical scales and
are centered in the images. Specifically, we detect facial
landmarks of all images using [30]. Then, we re-scale and
re-center all heads in the images by performing similar-
ity transforms computed between the detected landmarks
and the canonical landmarks of BFM [19]. Finally, we
center-crop all images and resize them to a resolution of
5122. Note that we preserve roll angles of the heads in-
stead of eliminating them as done in [4, 15]. We use
Deep3DRecon [10] to extract BFM coefficients from the
images and transfer them to FLAME codes via [3]. To
improve 3D-to-2D alignment, we conduct extra landmark-
based optimization to update the 3D shapes, expressions,
eye rotations, and 3D translations. The optimized FLAME
codes as well as the camera parameters are used for im-
age synthesis and correspondence map rasterization during
training. The camera intrinsics are set identical across all
images. In addition, we re-balance the pose distribution of
FFHQ based on the estimated head rotations. We duplicate
the images by factors of 2, 4, 8, and 16 for those with yaw
angles in ranges of 15◦ ∼ 30◦, 30◦ ∼ 45◦, 45◦ ∼ 60◦, and
larger than 60◦, respectively. We also flip all images and
extract the corresponding FLAME parameters. This lead
to 210K training images in total compared to the original
FFHQ with 70K images.

More training details. We randomly sample α,β,γ,θ
extracted from a same image, and combine them with a ran-
dom noise z. We perform volume rendering at a resolu-
tion of 642, and use hirearchical sampling strategy [4, 18]
with 48 coarse sampling points and 48 fine points. We train

Gca and D via Ladv and Lpart to see 25M images in to-
tal. The balancing weights for the two losses are set to
1 and 10, respectively. We use Adam optimizer [16] with
(β1, β2) = (0, 0.99) and learning rates of 0.0025 and 0.002
for the generator and the discriminator, respectively, and
set the batch size to 32. Experiments are conducted on
4 Tesla A100 GPUs with 40GB memory, and the training
takes around 2 weeks.

II.2. 4D Data Synthesis

In this section, we describe the data synthesis details for
training the 4D head reconstruction pipeline.

Specifically, we follow the data preprocessing procedure
described in Sec. II.1 to extract (α,β,γ,θ) from images
in FFHQ and VFHQ. For the dynamic data, we sample
α extracted from the FFHQ images and (β,γ) from the
VFHQ images. For the static data, α,β,γ are sampled
from both the FFHQ and VFHQ images. Note that for
γneck, we sample it from a manually-defined distribution,
with pitch in [−0.2, 0.2] rad, yaw in [−0.5, 0.5] rad, and
roll in [−0.1, 0.1] rad. For the camera pose θ, we also sam-
ple it from a pre-defined uniform distribution that covers
most of the camera parameters estimated from FFHQ, with
pitch in [−0.25, 0.65] rad, yaw in [−0.78, 0.78] rad, and roll
in [−0.25, 0.25] rad. The camera radius are uniformly sam-
pled from [3.65, 4.45], and the camera look-at position from
[−0.01, 0.01] × [−0.01, 0.01] × [0.02, 0.04]. We use fixed
camera intrinsics similarly as in GenHead, with a field of
view (FoV) equal to 12◦.

For a certain identity (α, z) with different motions and
camera poses, we use the same z to generate the back-
ground image. We maintain the intermediate outputs as ad-
ditional supervisions as described in the main paper. For
the sampled triplane features T̄ (x), we randomly choose
4000 coarse sampling points during the rendering process
and record their features fh from the triplanes Th. Be-
sides, for all synthesized images Īre, we use an average W
space [1] vector for the modulated convolutional layers in
the 2D super-resolution module. Visualizations of the syn-
thetic data can be found in Sec. III.2.

II.3. Animatable Triplane Reconstructor

Canonicalization and reenactment module. The canon-
icalization and reenactment module Φ consists of a de-
expression module Φde and a reenactment module Φre shar-
ing the same structure. They each has four transformer
blocks with a cross-attention layer, a self-attention layer,
and an MLP. An extra MLP is utilized to expand the spa-
tial dimension of the motion feature v for computing the
cross-attentions, as shown in Fig. 3 in the main paper. A
detailed structure of Φ can be found in Fig. XVI.
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Figure III. Head images synthesized by GenHead. We can generate diverse virtual identities and support individual control over head
shapes, expressions, eye gazes, neck poses, and camera poses. Best viewed with zoom-in.

Motion feature. We utilize the motion features from [25]
as input to Φ. More specifically, we use a concatenation
of the features from [25]’s expression encoder Eexp, lip en-
coder Elip, and eye encoder Eeye. This leads to a motion
vector v of dimension 30 + 512 + 6 = 548.

Background prediction. We leverage a U-Net to predict
the background feature map Ibg from the input image. The
structure of it is illustrated in Fig. XVII.

Image rendering. We follow a similar procedure as in
Sec. II.1 for image synthesis. Specifically, a foreground fea-
ture map If is rendered from the reconstructed triplane T
via Eq. (III), and fused with the predicted background Ibg
from the U-Net via Eq. (V). Note that for the 4D head syn-
thesis pipeline, we do not use part-wise triplanes as in Gen-
Head but a single triplane T to represent the whole head
region and render the corresponding images.



More training details. We train the animatable triplane
reconstructor Ψ using the synthetic data described in
Sec. II.2 and Sec. 3.2 in the main paper, as well as the train-
ing objective in Sec. 3.4 in the main paper. We initialize
the projection weights of all cross-attention layers to zeros,
and use the pre-trained weights from GenHead for the ra-
diance decoding MLP and 2D super-resolution module in
the renderer R, as well as the discriminator D. The balanc-
ing weights for each loss term in Eq. (4) in the main paper
are set to 1, 1, 0.1, 1, 0.3, 1, and 0.01 for Lre, Lf , Ltri,
Ldepth, Lopa, Lid, and Ladv , respectively. During the first
1000K images, we do not use Ladv and fix the network pa-
rameters inside the renderer R. After seeing 1000K images,
we activate Ladv and unfrozen the trainable parameters in
R. We discard Lf , Ltri, and Ldepth at this stage. Follow-
ing GenHead, we perform volume rendering with 48 coarse
sampling points and 48 fine points per ray. We use a volume
rendering resolution of 642 at the first 1000K images, and
gradually increase the resolution to 1282 at the next 1000K
images. During the entire training process, we use a fixed
average W space vector from GenHead for the 2D super-
resolution module as in Sec. II.2.

We train Ψ and R to see 12M images in total. We use
Adam optimizer with (β1, β2) = (0.9, 0.999) and a learn-
ing rate of 1e− 4 for all the networks. The batch size is set
to 32, half of which are dynamic data and half of which are
static data. The model is trained with 8 Tesla A100 GPUs
with 80GB memory for 10 days.

III. More Results
III.1. Evaluation of GenHead

Controllable head image generation. Figure III shows
the controllable head image generation results of GenHead.
We start from canonical appearances synthesized by ran-
dom noise z with an average shape and neutral expression
(i.e., α,β,γ = 0). Then, we introduce shape variations
as well as expression and pose control to different canoni-
cal heads. As shown, GenHead supports individual control
over head shape, expression, eye gaze, neck pose, and cam-
era pose. The synthesized images are of high photorealism
and can be directly used as training data to facilitate our
one-shot 4D head reconstruction pipeline.

Shape-aware canonical appearance. Figure IV shows
the synthesized canonical appearances given shape codes
α extracted from different source images as condition. In
each row, we fix the shape code and vary the random noise
z, and compute an image-space average appearance as well.
As shown, the distribution of the canonical appearance is in-
fluenced by the given shape code. In the ablation study, we
show that this strategy largely improves the image genera-
tion quality in terms of FID without sacrificing the control-
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Figure IV. Generated canonical appearances with shape codes
from different source images.

lability. Note that at inference time, we can use different
shape codes for the appearance and the deformation field
for more diverse virtual head image generation.

Comparisons with previous head GANs. We com-
pare GenHead with existing 3D head GANs: Disco-
FaceGAN [11], AniFaceGAN [27], 3DFaceShop [23],
GNARF [2], OmniAvatar [29], Next3D [22], and EG3D [4].
Since GNARF and OmniAvatar do not release their codes
and models for head generation, we only compare with their
reported FID. For a fair comparison, we re-train GenHead
using FFHQ images aligned by [4] instead of our new align-
ment described in Sec. II.1. We train the model at a reso-
lution of 2562 for efficiency. The following ablation study
also adopts the same configuration.

Table I shows the quantitative results. For image syn-
thesis quality, we measure the FID score between 50K gen-
erated images and all available real images in the training
set. For control accuracy, we measure APD, AED, Land-
mark Distance (LMD), Average Shape Distance (ASD),
and Average Shape Variance (ASV). For APD, we com-
pute the distance between input camera angles and those
reconstructed by [10] using 1000 generated images. For
AED, we manually extract expressions from 30 reference
images with typical and distinct expressions, and combine
them with 50 generated appearances for image synthesis.
We leverage EMOCA [9] to compute AED between the
reference images and the synthesized ones. For ASD and
LMD, we measure the vertex and landmark distances be-
tween input shapes and those reconstructed from synthe-
sized images using EMOCA, respectively. We randomly
sample 500 shape codes from the training set, and gener-
ate 10 different appearances for each shape. Since Disco-
FaceGAN, 3DFaceShop, and AniFaceGAN require BFM



Table I. Comparisons between head GANs on controllable items, generation quality&diversity (Q. & Div.), and control accuracy.

Method
Independent Control Item Q. & Div. Control Accuracy

Exp. Neck Gaze Teeth BG FID ↓ APD ↓ AED ↓ LMD ↓ ASD ↓ ASV ↓

DiscoFaceGAN [11] ✓ 12.9 0.031 0.829 - - 66.6
3DFaceShop [23] ✓ ✓ 21.7 0.022 0.865 - - 7.3
AniFaceGAN [27] ✓ 20.1 0.039 0.687 - - 19.9
GNARF [2] ✓ 6.6 - - - - -
OmniAvatar [29] ✓ ✓ ✓ 5.8 - - - - -
Next3D [22] ✓ ✓ 3.9 0.029 0.868 23.1 20.8 18.6

A Baseline EG3D [4] 4.8 N/A N/A N/A N/A N/A
B + Deformation & BG ✓ ✓ ✓ 6.5 0.031 0.783 9.6 9.1 9.3
C + Correspondence Map ✓ ✓ ✓ 7.8 0.030 0.757 10.5 9.9 5.5
D + Opacity Image ✓ ✓ ✓ 9.5 0.030 0.722 9.1 8.7 8.1
E + Shape Condition ✓ ✓ ✓ 4.7 0.032 0.700 9.5 9.0 6.4
F + Part Model (Ours) ✓ ✓ ✓ ✓ ✓ 4.6 0.028 0.699 9.1 8.5 6.1

Table II. Comparison on 3D consistency of different head GANs
using the evaluation metrics of [28].

Method PSNR ↑ SSIM ↑

EG3D [4] 34.0 0.928
Next3D [22] 34.5 0.941
Ours 34.2 0.940

shapes as condition which differ from our FLAME topol-
ogy, we only compare with Next3D for these two metrics.
For ASV, we calculate the vertex variance between recon-
structed shapes of different images synthesized with the
same shape code. Similarly, we sample 500 shape codes
and 10 different appearances for each shape.

As shown, GenHead achieves the best overall control ac-
curacy, with competitive image generation quality. What’s
more, our method supports full control over expression,
neck pose, eye gaze, relative motions between lips and
teeth, and background separation, which cannot be achieved
by previous methods. Figure V shows a comparison be-
tween GenHead and Next3D for separate teeth control. Ide-
ally, lip motions should not influence the position of the up-
per teeth. However, the upper teeth synthesized by Next3D
move with the lip variations. By contrast, our method
maintains the position of the upper teeth during expression
changes, which is more consistent with reality.

In Tab. II, we further compare the 3D consistency of our
method with EG3D and Next3D. We use the evaluation met-
ric from GRAM-HD [28] which measures the reconstruc-
tion fidelity of a 3D reconstruction method NeuS [26] on
multi-view images generated by different generators. As
shown, our method yields comparable results with the two
baselines. The high 3D consistency of GenHead guaran-
tees reasonable synthetic 4D data for learning the subse-
quent one-shot 4D head synthesizer. For further improve-
ment of the 3D consistency, a possible way is to use the
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Figure V. GenHead better captures the relative movements be-
tween lips and teeth, where the upper teeth should stay steady un-
der expression changes.

3D-to-2D imitative strategy proposed by Mimic3D [5] to
generate high-resolution tri-planes for direct volume render-
ing. This way, the synthetic 4D data of GenHead will have
even higher 3D consistency which can further facilitate the
learning of the 4D head synthesizer.

Ablation study. We conduct ablation studies to validate
different components in GenHead. A is a baseline identical
to EG3D. B adds the deformation field (non-part-wise) and
the background network on top of A. C introduces the cor-
respondence map condition to the dual discriminator and D
further introduces the opacity image condition. E leverages
the shape condition for synthesizing canonical appearance.
F utilizes the part-wise deformation field and canonical tri-
planes which is our final configuration.

Table I and Fig. VI show the comparisons between dif-
ferent configurations. Naively introducing the 3D defor-
mation (B) cannot achieve satisfactory motion control ac-
curacy as indicated by the relatively higher AED, LMD,
ASD and ASV, as well as the blurry image-space average
of the canonical appearance in Fig. VI. Adding the corre-
spondence map condition (C) improves the alignment of
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Figure VI. Ablation study. Top: synthesized canonical appear-
ances and their image-space averages. Bottom: synthesized im-
ages under expression and gaze variations.

the canonical appearances and leads to better controllabil-
ity in terms of AED and ASV, but sacrifices image qual-
ity and leads to transparent foregrounds. These artifacts
also lead to inaccurate shape reconstruction results as in-
dicated by the higher LMD and ASD. Further introducing
the opacity image (D) resolves the transparency issue and
improves the overall controllability, but leads to a further
quality drop in terms of FID. Conditioning the canonical
appearance on shape code (E) largely improves the image
quality and maintains competitive control accuracy. Finally,
adopting the part-wise deformation and canonical tri-planes
(F) improves the controllability of eye gaze and the quality
of inner mouth, and yields the best overall control accuracy.

III.2. Synthetic 4D Data

We showcase our synthetic data for training the one-shot
4D head synthesis pipeline in Fig. X and XI. As shown,
the dynamic data contain virtual identities each with differ-
ent motions and camera poses, while the static data contain
pose variations only. The static data have a wider range of

Input Config A Config E (Ours)Config C

Figure VII. Reconstruction results by switching off all cross-
attention layers in Φde and Φre.

identity distribution to enhance the model’s generalizability.
Backgrounds are fixed for each identity to facilitate learning
the foreground-background separation.

III.3. One-Shot 4D Head Synthesis

We provide additional one-shot 4D head synthesis results
in Fig. XII and XIII. Our method can faithfully reconstruct
head avatars from the given portraits and control their ex-
pressions and poses for photorealisitic image synthesis.

III.4. Comparisons with the Prior Art

Figure XIV and XV shows more visual comparisons on
one-shot head reenactment with previous methods. Our
method yields the best visual quality, and can well preserve
the identities and geometries of the source images under
large pose variations compared to the alternatives.

III.5. Φde in Different Configurations

Figure VII shows the reconstruction results of an input im-
age by switching off all cross-attention layers in Φde and
Φre in different configurations (corresponding to the abla-
tions in the main paper). Without cross-attentions, config. A
and C still canonicalize expression of the input, which indi-
cates that the self-attention and feed-forward layers in Φde

take the responsibility of expression neutralization. By con-
trast, ours handles expression neutralization only through
the cross-attentions thus the reconstructed expression is un-
changed under this circumstance.

III.6. Out-of-Distribution Results

We show reenactment results on out-of-distribution subjects
in Fig. VIII, where the sources are generated from Stable
Diffusion [20] and the drivings from Unity Engine. Our
method produces reasonable results on these cases.

IV. Discussions
IV.1. Limitations and Future Works

While our method can synthesize high-fidelity 4D head
avatar at a single shot, it still has some limitations.

Our method cannot well handle complex accessories and
makeups as shown in Fig. IX. It also struggles to reconstruct
high-frequency details in the background (e.g., last row in
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Figure VIII. Reenactment results on out-of-distribution subjects.
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Figure IX. Limitations of our method. It can produce inferior re-
sults for input with heavy makeups and large viewing angles.

Fig. XII). We believe this problem can be mitigated by in-
creasing the volume rendering resolution to allow for more
intricate information flow. This would also help with the
texture flickering issue brought by the 2D super-resolution
module. Learning with synthetic data of more diverse ap-
pearance can also be helpful.

When the input image is nearly profile with large yaw
angles, our method can produce inferior results due to out-
of-distribution issue (see Fig. IX). We are also aware of
artifacts under certain expressions such as eye blink, as
the GenHead model for data synthesis is learned on FFHQ
dataset with relatively less images of closed eyes. It is pos-
sible to leverage data with more diverse expressions and
poses to improve the model’s generalizability.

Currently, the synthetic data from GenHead relies on
3DMM for expression control which can be less vivid com-
pared to that of real data, and thus restricts the motion con-
trol ability of our method. Besides, the data synthesis pro-
cess requires training an animatable 3D-aware GAN in ad-
vance which is also challenging and can suffer from loss of
modality issue of GAN. Learning on 4D synthetic data also
encounters more severe overfitting issue compared to learn-
ing on static 3D data as in [24]. Therefore, synthesizing 4D
data of better quality and diversity to facilitate the one-shot
reconstruction pipeline is a key problem to be solved. Al-
ternatively, it is worth exploring an effective way to incor-
porate real data and 3D priors into an end-to-end training
framework. Apart from that, extending the current pipeline
to support few-shot cases is also an important direction.

IV.2. Ethics Consideration

The goal of this paper is to create animatable head avatars
for virtual communications. However, without a proper su-
pervision, it can be misused for creating deceptive contents
to people. We do not condone any such harmful behavior.
Incorporation of advanced deepfake detectors [7, 8, 21] is a
possible way to prevent the potential misuse.
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[9] Radek Daněček, Michael J Black, and Timo Bolkart. Emoca:
Emotion driven monocular face capture and animation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 20311–20322, 2022. 5

[10] Yu Deng, Jiaolong Yang, Sicheng Xu, Dong Chen, Yunde
Jia, and Xin Tong. Accurate 3d face reconstruction with
weakly-supervised learning: From single image to image set.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 0–0, 2019. 3, 5

[11] Yu Deng, Jiaolong Yang, Dong Chen, Fang Wen, and Xin
Tong. Disentangled and controllable face image generation
via 3D imitative-contrastive learning. In IEEE/CVF Con-

https://github.com/TimoBolkart/BFM_to_FLAME
https://github.com/TimoBolkart/BFM_to_FLAME


ference on Computer Vision and Pattern Recognition, pages
5154–5163, 2020. 5, 6

[12] Stephan J Garbin, Marek Kowalski, Virginia Estellers,
Stanislaw Szymanowicz, Shideh Rezaeifar, Jingjing Shen,
Matthew Johnson, and Julien Valentin. Voltemorph: Real-
time, controllable and generalisable animation of volumetric
representations. arXiv preprint arXiv:2208.00949, 2022. 2

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
Neural Information Processing Systems, 27, 2014. 2

[14] James T Kajiya and Brian P Von Herzen. Ray tracing volume
densities. ACM SIGGRAPH, 18(3):165–174, 1984. 2

[15] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4401–4410, 2019. 2, 3

[16] Diederik P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations, 2015. 3

[17] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for gans do actually converge?
In International Conference on Machine Learning, pages
3481–3490, 2018. 2

[18] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In European Conference on Computer Vision, pages
405–421. Springer, 2020. 2, 3

[19] Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami
Romdhani, and Thomas Vetter. A 3D face model for pose
and illumination invariant face recognition. In IEEE Inter-
national Conference on Advanced Video and Signal Based
Surveillance, pages 296–301, 2009. 3

[20] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022. 7
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Figure X. Synthesized dynamic data from GenHead for learning one-shot 4D head synthesis.



Figure XI. Synthesized static data from GenHead for learning one-shot 4D head synthesis.
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Figure XII. One-shot 4D head synthesis results by our method.
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Figure XIII. One-shot 4D head synthesis results by our method.
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Figure XIV. Comparison on one-shot head reenactment with previous methods. Best viewed with zoom-in.
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Figure XV. Comparison on one-shot head reenactment with previous methods. Best viewed with zoom-in.
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Figure XVI. Network structure of the canonicalization and reenactment module Φ.
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Figure XVII. Structure of the background U-Net.
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