
Overall pipeline of Appendix. We first include related work in Section A. Then the notations and algorithm details of
SGPT are explained in Section B. In Section C, we introduce the proof of Theorem 4.1 along with required lemmas. Finally,
additional analysis are reported in Section D for a more comprehensive study.

A. Related Work
A.1. Generic Federated Learning
FedAvg [37] is a standard FL algorithm that involves multiple rounds of local training and global aggregation. Many works
focus on improving FedAvg through various aspects: (1) global aggregation methods [5, 52, 60] replace the weighted average
with more dedicated strategies like ensemble and distillation. (2) optimization methods [20, 21, 30] reduce the client drifts [21]
by correcting local gradients [21] or employed regularization toward the global model [30] thus achieving a better convergence
rate. Recently, FedPR [13], a prompt-tuning-based GFL method, learns client prompts in the null space of group prompts
in the previous round and aggregates them into global prompts, but it may not perform well when the global prompts are
not low-rank [7]. The disadvantage of GFL methods is they are insufficient [30] for good performance when dealing with
significant data heterogeneity.

A.2. Personalized Federated Learning
PFL [25] learns a customized model for each client. To be specific, Fine-tuning methods [38, 46] adjust a global or meta-trained
model to adapt to local client data by fine-tuning part of the global model. Clustered FL [4, 14, 35] clusters clients with similar
data distribution, assuming that they can share the same optimal model, however, imposes a heavy computational burden.
pFedHN [44] learns a hypernetwork at the server to aggregate clients’ model updates and produce their entire models for the
next round. The disadvantage of PFL is overcoming challenges in adapting to new clients and overfitting local data. In this
paper, we learn a generalized FL model that not only achieves high accuracy on the global distribution but is also capable of
aligning with different local distributions without local adaptation.

A.3. Parameter Efficient Tuning
Parameter efficient tuning (PET) [8], initially proposed for text models, enables easier access and usage of pre-trained models
by reducing the memory cost needed to conduct fine-tuning due to fewer computed gradients. PETuning techniques, including
methods like Adapter Tuning [28], LoRA [57], Prompt-Tuning [13], and Head-Tuning [56], freeze most parameters of
pre-trained models and update only a few additional parameters or a part of the original model parameters for downstream
tasks. This paper focuses on prompt tuning due to no need to modify anything inside the neural network [27, 33] and Visual
Prompt Tuning (VPT) [19] has been established as an efficient and effective PETuning method for adapting large-scale
ViT models to vision tasks. Recent studies on VPT have been conducted in fields like continual learning [53, 54] and
multi-modality learning [23, 32]. Although these advancements have shown progress in various visual tasks, prompt tuning
remains predominantly limited to centralized systems. The effectiveness of prompt tuning in a distributed framework has yet
to be thoroughly investigated.

B. Algorithm details
B.1. Notation
For convenience, we summarize the notations used in this paper in Table 6.

B.2. Training Algorithm
We present more details in the training phase of SGPT . We provide a detailed illustration of the training process for our
proposed method in Algorithm 2 based on the commonly used FedAvg [37] scheme: during each communication round,
the clients engage in local training using the global model received from the server, and the server aggregates the shared
parameters from the clients to update the global model. Notably, SGPT can be combined with other FL methods. Particularly,
in SGPT’s training, the local model parameters (i.e., PS , WC , K, and PG) are sent back to the server for aggregation. For
model parameters, the aggregation weight of client i is determined by ↵i = Ni/N . Regarding the aggregation of keys, we
initially calculate the selection quantity of a group g on client i at round t denoted as N i,t

g
. Then, the aggregation weight for a

group key is computed as N i,t

g
/
P

i
N i,t

g
. At last, the momentum aggregation is applied to the keys and group prompts.

Table 6. Main notations used in this paper.

Basic Variables
M , Number of clients
X , Input space
Y , Label space
Di , Data distribution on client i and Di is on X ⇥ Y

N =
P

M

i=1 Ni , Ni is number of data samples at client i and N is
the number of data on all clients

{xi, yi} ⇠ Di , Data sample (xi, yi) located on participating client
i is made of i.i.d sampling from Di

Function Variables
` , loss function

Select , Prompt Selection function
[G], G , Group set, number of groups G

D
i

g
, Data distribution on client i from group g

N i

g
, Number of data samples at client i from group g

Ng =
P

M

i=1 N
i

g
, Number of data samples from group g

K, kg , Keys set, key of g-th group |G|

PG , Weight of group prompts
PS , Weight of shared prompts
WC , Weight of classifier
h✓ , Pretrained foundation model
cls , Classification token
E , Image patch embeddings
Z , Prompt features embeddings

B.3. Inference Algorithm
We present more detials in the inference phase of SGPT . The inference procedure of SGPT in Algorithm 3. Given a sample x,
we first use the Select function (see Eq. (5)) to determine its group membership g = Select(x). Then, the shared prompt
PS and corresponding group prompts pg are inserted into the model to achieve sample-level adaptation for inference. When
performing tests on new clients, the frequencies of selected group prompts can automatically adjust by Select function
(shown in Fig. 2 (c)), ensuring our model aligns with their local data distributions.

C. Technical details and Omitted proofs
C.1. Settings and Definitions
First, we formally set up some general notation: For a distribution D with support (X ,Y) and a non-negative loss function
` : X ⇥ Y ! R+ denote the population risk of a hypothesis h : X ! Y as follows:

LD(h) = E(X,Y)⇠D[`(h(X), Y)] .

Let H represent a hypothesis class and denote the hypothesis ĥ minimizing the empirical risk as

bh = argmin
h2H

L bD(h),

where we denote D̂ the empirical distribution of samples drawn iid from D. We will also denote RD,n(H) the Rademacher
complexity of the hypothesis class H over the distribution D with n samples. Furthermore, we define the distribution mismatch
between two distributions D1 and D2 as

discH (D1,D2) = max
h2H

|LD1(h)� LD2(h)| . (15)

Algorithm 2 SGPT Training Algorithm
Server Input: Initial weights W = {WC , PG, PS}, prompt selection module Select with learnable keys K = {kg}Gg=1,
number of participating clients in each round m = � ⇥M , number of communication rounds T , client data ratio set {↵i}

M

i=1,
accumulated selection quantity {vi

g
}
M

i=1, g 2 [G].
Client i’s Input: Pre-trained Transformer h✓, training data (xi, yi) ⇠ Di for client i, learning rate ⌘, number of local training
steps E.

1: For t = 1! T rounds, sample m clients and execute Procedure A and Procedure B iteratively.
2: procedure A: CLIENTUPDATE(i)
3: Wi W . Initialize with global model
4: Ki K . Initialize with global keys
5: Apply Block Coordinate Descent (Algorithm 1) to update the parameter Wi and Ki.
6: Count the group selection quantity {N i

g
}g2G

7: Send updated Wi, Ki and {N i

g
}g2G to SERVEREXECUTE

8: end procedure
9: procedure B: SERVEREXECUTE(t)

10: Receive local models’ parameters from CLIENTUPDATE
11: [W t

C
, P t

S
, P t

G
]

P
m

i=1 ↵i[W
i,t

C
, P i,t

S
, P i,t

G
] . Parameter Aggregation

12: for g = 1! G do
13: kt

g

P
m

i=1
N

i,t
gP

i2[m] N
i,t
g

ki,t
g

. Key Aggregation

14: vt
g
= vt�1

g
+

P
m

i=1 N
i,t

g
. Accumulate Group Number

15: end for
16: Apply Momentum Aggregation Eq. 7.
17: (k̂0

g
, p̂0

g
= k0

g
, k0

g
if t = 0)

18: k̂t
g
= ↵kk̂t�1

g
+ (1� ↵k)ktg

19: p̂t
g
= ↵gp̂t�1

g
+ (1� ↵g)ptg, g 2 [G]

20: broadcast parameters to CLIENTUPDATE
21: end procedure

Next, we formally introduce the statistical setting of our analytical investigation of the impact of group-aware hypothesis
inference in a multi-client setting. For clients i 2 [M], let Di denote their corresponding distributions of data pairs (X,Y).
We assume that each local distribution Di is a mixture of group-specific distributions Di

g
, g 2 [G] for G. Concretely,

Di =

X

g2[G]

⇡i

g
D

i

g
, (16)

with mixing probability vector [⇡i

1, . . . ,⇡
i

G
]. This also induces a probability distribution Cg of data belonging to group g as

follows:

Cg =

X

i2[M]

⇡i

g
D

i

g
. (17)

Following [18], we refer to the distribution Cg as the participated client’s data distribution for the g-th group. In our setting,
the group assignment formalized above corresponds to the execution of the function Select : X ! [G] assigning data to
different groups.

We will also consider the empirical versions of the above distributions. Formally, let D̂i the induced local empirical
distribution of client i by sampling N i

g
iid samples from each D

i

g
. Further, let Ni =

P
g2[G] N

i

g
denote the total number of

samples per client and Ng =
P

M

i=1 N
i

g
denote the total number of data samples from group g. Onwards, we assume that

the mixture weights in (16) are set as ⇡i

g
= N i

g
/Ni. Thus, we also define the empirical distribution Ĉg of each group as

Ĉg =
P

i2[M] ⇡
i

g
D̂

i

g
=

P
i2[M]

N
i
g

Ni
D̂

i

g
. Finally, given a set {h1, . . . , hG} of G hypotheses hg 2 H, g 2 [G] one corresponding

to each group, we denote hSelect the group-aware (data-point dependent) hypothesis determined by the Select function. In
other words, hSelect = {h1, . . . , hG}Select(x) denotes a hypothesis that when acting on datapoint x returns hSelect(x), for a
fixed function Select : X ! [G].

Algorithm 3 SGPT Inference Algorithm.
Input: Pre-trained Transformer h✓ with U layers, layers set US to insert shared prompts and layers set UG to insert group
prompts, trainable weights W = {WC , PG, PS}, Prompt Selection Module Select with orthogonal keys K = {kg}Gg=1, a
single test sample xn.

1: Extract representation h✓(xn) with pre-trained model h✓

2: g argmax
g2G

cos(h✓(xn), bg) . Obtain group ID
3: Select corresponding group prompt pg
4: Encode xn into E0 . Encode image into patch embedding (Section 2.2)
5: for i! U do
6: if i 2 US then
7:

⇥
cls1, ZS

1 , E1

⇤
= h(i)

✓

⇣h
cls0, P

(i)
S

, E0

i⌘
. . Insert shared prompts

8: else if i < u then
9:

⇥
clsi, ZS

i
, Ei

⇤
= h(i)

✓

�⇥
clsi�1, ZS

i�1, Ei�1

⇤�
.

10: else if i 2 UG then
11:

⇥
clsu, Zg

u
, ZS

u
, Eu

⇤
= h(u)

✓

⇣h
clsu�1, p

(i)
g , ZS

u�1, Eu�1

i⌘
. . Insert group prompt

12: else
13:

⇥
clsi, Z

g

i
, ZS

i
, Ei

⇤
= h(i)

✓

�⇥
clsi�1, Z

g

i�1, Z
S

i�1, Ei�1

⇤�
.

14: end if
15: end for
16: y⇤ f(WC) . Final Prediction
17: return final logits prediction y⇤

C.2. Lemmas
In this section, we cover some technical lemmas which are useful for proving our main result. Lemma C.1 below splits the
participated clients’ distribution risk into the risks of each individual’s group.

Lemma C.1 (Split the distribution risk). Let fixed function Select : X ! {1, ..., G}. For the group-aware hypothesis
hSelect that selects among hypotheses {h1, . . . , hG}, it holds for any client i 2 [M] that

LDi(hSelect) =
GX

g=1

N i

g

Ni

LDi
g
(hg).

Proof. By definition of the population risk:

LDi(hSelect) = E(x,y)⇠Di
[`(hSelect, x, y)].

The desired follows from this by recalling the decomposition in (16) with weights mixing weights ⇡i

g
=

N
i
g

Ni
.

The next lemma is useful to derive global and local performance gap.

Lemma C.2 (Bound on the generalization error). Assume the loss is bounded in [0, 1] and fix any client i 2 [M]. Then with
probability at least 1� � over the training set,

GX

g=1

N i

g

Ni

min
hg2H

LCg (hg)�

GX

g=1

N i

g

Ni

min
hg2H

LbCg
(hg)  2

s
log

1
�

Ni

+

GX

g=1

N i

g

Ni

<Cg,Ng (H). (18)

Proof. For any set of real numbers a1, ..., aq and b1, ..., b1 observe that mini ai  maxi ai and mini bi = �maxi�bi, we
get

min
i

ai �min
i

bi  max
i

(ai � bi) .

Using this it holds that

GX

g=1

N i

g

Ni

min
hg2H

LCg (hg)�

GX

g=1

N i

g

Ni

min
hg2H

LbCg
(hg) 

GX

g=1

N i

g

Ni

max
hg

⇣
LCg (hg)� L

Ĉg
(hg)

⌘
.

Since the loss is bounded in [0, 1], changing one sample changes the above term by at most one. Thus, by the McDiarmid’s
inequality, with probability at least 1� �,

GX

g=1

N i

g

Ni

max
hg

⇣
LCg (hg)� L

Ĉg
(hg)

⌘


1

Ni

E
"

GX

g=1

N i

g
max
hg

⇣
LCg (hg)� L

Ĉg
(hg)

⌘#
+

r
1

Ni

log
1

�
. (19)

Moreover, note that:

E
"

GX

g=1

N i

g

Ni

max
hg

⇣
LCg (hg)� L

Ĉg
(hg)

⌘#
=

GX

g=1

N i

g

Ni

E

max
hg

(LCg (hg)� L
Ĉg
(hg))

�

 2

GX

g=1

N i

g

Ni

<Cg,Ng (H). (20)

Combining Eq. (19) and Eq. (20), completes the proof.

C.3. Proof of Theorem 1

We are now ready to prove Theorem 4.1.

Proof. Given Lemma C.1, we split the distribution risk. Thus, the global-to-local performance gap becomes

GX

g=1

N i

g

Ni

L bDi
g
(bhg)�min

h2H

LDi(h),

where bhg = argminh2H LbCg
(h) denote the empirical model for data group g. Next, observe from (16) that

min
h2H

LDi(h) = min
h2H

GX

g=1

N i

g

Ni

LDi
g
(h)

�

GX

g=1

N i

g

Ni

min
hg2H

LDi
g
(hg) .

Denote h?

gi
= minhg2H LDi

g
(hg), we then get the following:

GX

g=1

N i

g

Ni

L bDi
g
(bhg)�min

h2H

LDi(h) 
GX

g=1

N i

g

Ni

L bDi
g
(bhg)�

GX

g=1

N i

g

Ni

min
hg2H

LDi
g
(hg)

=

GX

g=1

N i

g

Ni

L bDi
g
(bhg)�

GX

g=1

N i

g

Ni

h
LCg (h

?

gi
) + LDi

g
(h?

gi
)� LCg (h

?

gi
)

i

=

GX

g=1

N i

g

Ni

L bDi
g
(bhg)�

GX

g=1

N i

g

Ni

h
LCg (h

?

gi
) + LDi

g
(h?

gi
)� LCg (h

?

gi
)

i

�

GX

g=1

N i

g

Ni

LbCg
(bhg) +

GX

g=1

N i

g

Ni

LbCg
(bhg)

=

GX

g=1

N i

g

Ni

L bDi
g
(bhg)�

GX

g=1

N i

g

Ni

LbCg
(bhg)

+

GX

g=1

N i

g

Ni

⇣
LCg (h

?

gi
)� LDi

g
(h?

gi
)

⌘

+

GX

g=1

N i

g

Ni

LbCg
(bhg)�

GX

g=1

N i

g

Ni

LCg (h
?

gi
) (21)

Observing that
P

G

g=1
N

i
g

Ni
minhg2H LCg (hg) 

P
G

g=1
N

i
g

Ni
LCg (h

?

gi
) we get

(25) 
GX

g=1

N i

g

Ni

max
hg2H

���LDi
g
(hg)� LCg (hg)

���+
GX

g=1

N i

g

Ni

max
hg2H

���L bDi
g
(hg)� LbCg

(hg)

���

+

GX

g=1

N i

g

Ni

min
hg2H

LbCg
(hg)�

GX

g=1

N i

g

Ni

min
hg2H

LCg (hg) .

Then, combining lemma C.2, absolute homogeneity of Rademacher complexity, and the definition of the discrepancy in
Eq. (15), we will have with probability 1� �,

GX

g=1

N i

g

Ni

L bDi
g
(bhg)�min

h2H

LDi(h) 

s
log

1
�

Ni

+ 2

GX

g=1

N i

g

Ni

<Cg,Ng (H) +

GX

g=1

N i

g

Ni

⇣
disc(D

i

g
, Cg) + disc(bDi

g
, bCg)

⌘
(22)

When the VC dimension of Hypothesis class H is d, then we can obtain:

GX

g=1

N i

g

Ni

L bDi
g
(bhg)�min

h2H

LDi(h) 

s
log

1
�

Ni

+ 2

GX

g=1

N i

g

Ni

s
2d

Ng

log(
eNg

d
) +

GX

g=1

N i

g

Ni

⇣
disc(D

i

g
, Cg) + disc(bDi

g
, bCg)

⌘
(23)

This completes the proof of Theorem 4.1.

C.4. Discussion on the Distribution Discrepancy
We detailly discuss the distribution discrepancy term in Eq. 14. Combined with Eq. 13, our DD term can be expressed asP

g
disc(D

i

g
,
P

i
⇡i

g
Di

g
), showing the disparity between group g’s data from all clients and group g’s data on client i’s. The

proposed selection module aims to cluster data across clients from the same distribution (Di

g
⇡ Dj

g
⇡ Dg for i, j 2 [M]), thus

reducing the DD term. Despite the challenges of distributed data clustering, our selection module showed strong performance
(see Table 4) and even comparable to centralized K-means results (App. Figure 6. (a) and App. D.2). In the case of random or
no selection module to group data, DD term becomes disc(

P
j
Dj , Di) =

P
j 6=i

disc(Dj , Di) for client i, showing significant
disparity between all clients’ combined data and client i’s data.

C.5. Performance Gap on Real Distribution
In this section, we follow the idea in [1] to give the gap between the population loss of the global model found by empirical
loss minimization using the Select grouping function and the population loss of the optimal model of client i. Different
from [1] that focus on clustering clients, here we focus on clustering data into groups: LDi(

bhSelect) � minh2H LDi(h).
Different from theirs based on clustering clients into non-overlapping coalitions, we focus on learning parameters for each data
group, allowing each client to benefit from knowledge distilled from all other clients’ datasets [36]. We present the theorem
below:

Theorem C.3. Assume the loss function ` is bounded in [0, 1] and the function Select is a data grouping method. Let
RD,m(H) represent the Rademacher complexity of the hypothesis class H over the distribution D with m samples. Then, with
a probability of at least 1� � over the training set,

LDi(
bhSelect)�min

h2H

LDi(h)  2

s
log

1
�

Ni

+ 4

GX

i=1

N i

g

Ni

<Cg,Ng (H) +

GX

g=1

N i

g

Ni

�
2 disc(D

i

g
, Cg)

�
, (24)

where discH (D1,D2) = maxh2H |LD1(h)� LD2(h)|.

The obtained theorem also suggests that tuning G is important in achieving optimal performance, which agrees with
theorem 4.1.

Proof.

LDi(bhg) 

GX

g=1

N i

g

Ni

LCg (
bhg) + LDi(bhg)�

GX

g=1

N i

g

Ni

LCg (
bhg)

=

GX

g=1

N i

g

Ni

LCg (
bhg) +

GX

g=1

N i

g

Ni

LDi
g
(bhg)�

GX

g=1

N i

g

Ni

LCg (
bhg)

=

GX

g=1

N i

g

Ni

LCg (
bhg) +

GX

g=1

N i

g

Ni

disc(D
i

g
, Cg)



GX

g=1

N i

g

Ni

LbCg
(bhg) +

GX

g=1

N i

g

Ni

disc(D
i

g
, Cg) +

GX

g=1

N i

g

Ni

⇣
LCg (

bhg)� LbCg
(bhg)

⌘



GX

g=1

N i

g

Ni

LbCg
(bhg) +

GX

g=1

N i

g

Ni

disc(D
i

g
, Cg) +

GX

g=1

N i

g

Ni

max
hg

⇣
LCg (hg)� L

Ĉg
(hg)

⌘



GX

g=1

N i

g

Ni

LCg (h
?

gi
) +

GX

g=1

N i

g

Ni

disc(D
i

g
, Cg)

+

�����

GX

g=1

N i

g

Ni

⇣
LbCg

(h?

gi
)� LCg (h

?

gi
)

⌘�����+
GX

g=1

N i

g

Ni

max
hg

⇣
LCg (hg)� L

Ĉg
(hg)

⌘



GX

g=1

N i

g

Ni

LCg (h
?

gi
) +

GX

g=1

N i

g

Ni

disc(D
i

g
, Cg) + 2

GX

g=1

N i

g

Ni

max
hg

⇣
LCg (hg)� L

Ĉg
(hg)

⌘



GX

g=1

N i

g

Ni

LDi
g
(h?

gi
) +

GX

g=1

N i

g

Ni

disc(D
i

g
, Cg) + 2

GX

g=1

N i

g

Ni

max
hg

⇣
LCg (hg)� L

Ĉg
(hg)

⌘

+

GX

g=1

N i

g

Ni

⇣
LCg (h

?

gi
)� LDi

g
(h?

gi
)

⌘



GX

g=1

N i

g

Ni

LDi
g
(h?

gi
) + 2

GX

g=1

N i

g

Ni

disc(D
i

g
, Cg) + 2

GX

g=1

N i

g

Ni

max
hg

⇣
LCg (hg)� L

Ĉg
(hg)

⌘
(25)

Figure 5. T-SNE maps of CIFAR-100 data features processed by the different layers of the ImageNet-21K pre-trained ViT-16/B model. Data
from different coarse classes are labeled with different colors.

Then, combining lemma C.2, absolute homogeneity of Rademacher complexity, and the definition of the discrepancy in
Eq. (15), we will have

GX

g=1

N i

g

Ni

LDi
g
(bhg)�min

h2H

LDi(h)  2

s
log

1
�

Ni

+ 4

GX

g=1

N i

g

Ni

<Cg,Ng (H) + 2

GX

g=1

N i

g

Ni

disc(D
i

g
, Cg)

D. Additional Analysis
D.1. Feature T-SNE map of pre-train model
In this section, we examine features outputted from various layers of a pre-trained ViT model. As illustrated in Fig. 5,
features from different classes processed by the early layers of a pre-trained ViT are uniformly distributed on the manifold,
indicating shared information across classes. In later layers, the features become more specialized and cluster together, thereby
introducing higher heterogeneity in FL. As a result, it validates our motivation in introducing shared prompts into lower layers
for common information and group prompts into higher layers for specialized information (Section 3.1).

D.2. The influence of Momentum Ratio
In this section, we perform an ablation study on the two momentum ratios in Eq. 7. We use the CIFAR-100 dataset with
s = 10 as a case study.
Key Momentum Ratio. We conduct an analysis of the key momentum ratio and begin by applying centralized K-Means to the
training data to generate cluster labels for the data. Subsequently, we assess the congruence between the groups learned through
our distributed approach and the clusters identified by K-Means. To be specific, we first calculate the normalized contingency
matrix [50] between cluster results from centralized K-Means and SGPT and obtain the overlapping ratio Accoverlap by
summing the maximum values of each row in this matrix. Then we evaluate the quality of the centralized K-Means result,
Qkmeans, by calculating the ratio of data from the same class clustered into the same group. Finally, we calculate Accoverlap

Qkmeans
to

obtain the congruence score. Fig. 6a demonstrates that Select can match the performance of centralized K-Means. Notably,
with a momentum setting of ↵k = 0.5, it achieved its highest congruence score at 86.8%.
Group Momentum Ratio. Based on the optimal key momentum ratio, we study the influence of group momentum ratio ↵g

on both the global accuracy and the worst local accuracy. Fig. 6b illustrates that an increase in ↵g enhances the worst local
accuracy, as a higher ↵g incorporates more knowledge from previous rounds. As to the global accuracy, initially, it improves
attributing to enhanced stability, but it starts to decline when ↵g exceeds 0.5, indicating an over-rely on information from
previous rounds. Therefore, the optimal group momentum ratio is ↵k = 0.5. We also report the best baseline performances
with two vertical dashed lines, SGPT can outperform baselines across all momentum ratios.
Consequently, without further declarations, we set the momentum ratio at 0.5 for both the key ↵k and group prompt ↵g .

E. Description of Heterogeneity
In this section, we describe the details of label heterogeneity and feature heterogeneity settings and provide examples of them.

E.1. Label Heterogeneity
For CIFAR-100, we follow [28, 38] to apply the “Pathological Partition”, where each client is randomly assigned s classes.
The sample rate on client i of selected class s is obtained by ai,c/

P
j
aj,c, where ai,c ⇠ U(.4, .6). Considering that s equals

(a) Influence of key momentum ratio ↵k: We assess the congruence
between the groups distributively learned by Select and those identi-
fied by centralized K-Means. Optimal congruence is observed at a key
momentum ratio of ↵k = 0.5.

(b) Influence of group momentum ratio ↵g : We study the influence
of the group momentum ratio ↵g on global accuracy and worst local
accuracy. We highlight the sweet spot using a horizontal dashed line
and the best baseline performance with two vertical dashed lines.

Figure 6. Ablation study on key momentum ratio ↵k and group momentum ratio ↵g .

Figure 7. Examples of data distribution with s = 10 for four clients are presented. Due to the large number of classes (100 classes in
CIFAR-100), every two clients are plotted on the same figure, with different colors indicating different classes.

10, we illustrate the data distribution for four clients out of a total of 100 in Fig. 7. As depicted, ai,c affects the data size of a
class and introduces class imbalance within a client. Simultaneously, each client possesses 10 classes, the combination varies
across clients, thereby introducing label heterogeneity. As s decreases, the variety of classes available to each client becomes
limited, resulting in a restricted label distribution for each client and an increase in the number of samples per class.
Regarding the Five Datasets, we allocate the data and ensure each client receives data from one dataset. Figure 8 presents image
samples from five clients with each client representing one of the five datasets. This approach introduces label heterogeneity
due to the unique nature of each dataset.

E.2. Feature Heterogneity
For conducting clients with feature heterogeneity, we follow the methodologies outlined in the latest benchmark for feature
heterogeneity [56] as well as in the widely-referenced paper [31]. According to these sources, we assign a data domain to
each client, with the total number of clients (M) set to 4 for Office-Caltech10 and 6 for DomainNet respectively. Image
examples from these datasets are displayed in Fig.9 and Fig.10 for DomainNet and Office-Caltech10, respectively. As
illustrated, different clients receive data from the same classes but sourced from various domains, thereby introducing feature
heterogeneity.

Figure 8. Examples of images from five clients with each client representing one of the five datasets.

Figure 9. Examples of images from different clients with DomainNet.

Figure 10. Examples of images from different clients with Office-Caltech10 dataset.

	. Introduction
	. Problem Setting and Preliminary
	. Problem Setting
	. Visual Prompt Tuning (VPT)

	. Method
	. Architecture
	. Learning Prompt Selection Function
	. Block Coordinate Descent for Optimization
	. Efficient Inference

	. Theoretical Analysis
	. Experiments
	. Experiment Setup
	. Results
	Label Heterogeneity Results
	Feature Heterogeneity Results.

	. Global and Local Performance Trade-off
	Analysis and Ablation Study

	. Conclusion
	. Related Work
	. Generic Federated Learning
	. Personalized Federated Learning
	. Parameter Efficient Tuning

	. Algorithm details
	. Notation
	. Training Algorithm
	. Inference Algorithm

	. Technical details and Omitted proofs
	. Settings and Definitions
	. Lemmas
	. Proof of Theorem 1
	. Discussion on the Distribution Discrepancy
	. Performance Gap on Real Distribution

	. Additional Analysis
	. Feature T-SNE map of pre-train model
	. The influence of Momentum Ratio

	. Description of Heterogeneity
	. Label Heterogeneity
	. Feature Heterogneity

