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1. Network Architecture

The network structure of ShapeMatcher is illustrated in

Fig. 1, containing the structure illustration of the partial

and the full branches (Dual-branch structure, (a)), and of

the deformation module (b). In (a), taking the full branch

as an example, the input point cloud goes through the VNT

simple encoder to generate the invariant features. The seg-

mentation network, region centroid extraction network, and

feature extraction network all take these features as inputs,

each established with a 4-layer MLP. The network of the

partial branch shares the exactly same architecture with the

full branch. Upon retrieving the most similar CAD model,

in (b), the invariant features from the two branches are con-

catenated and fed into the influence vector extraction net-

work to generate neural cage influence vectors. Based on

the influence vectors and the offset of the region centroid,

the neural cage is controlled to generate the final deformed

mesh.

2. Training and Testing Details

As Sec. 3.5 in the main manuscript illustrates, the joint

training procedure for ShapeMatcher contains three stages.

First, we train the full branch for gaining Canonicalization
and Segmentation capability. In the first stage, the used loss

function is defined as

L(1) = Lcan + Lseg. (1)

During this stage, the target input of ShapeMatcher Stgt is

a full point cloud with a random pose, augmented by Sc
tgt

lying in the affine-invariant space by random translations

Trand ∈ [−0.1, 0.1] and random rotations Rrand ∈ [−1, 1]
on three Eulerian angles respectively. We adopt the supple-

mentary reconstruction branch to predict Ŝc
tgt to construct

the Lcan. This stage lasts 200 epochs adopting the Adam
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optimizer with the learning rate of 0.0006, taking 7 hours

on a single NVIDIA 3090.

Second, the partial-full consistency losses Lccan, Lccen

and Lcseg are considered for the partial branch to learn

Canonicalization and Segmentation processes. Specifically,

in this stage, the weights of the full branch is frozen. The

input of the full branch Sfull is also generated by Sc
full by

adding random translations and rotations. Meanwhile, the

input of the partial branch Spartial is obtained via the trun-

cation mask Uf2p ∈ R
N by Spartial = SfullUf2p. This

truncation operation ensures the consistent partial-full cor-

respondence of Sfull and Spartial. In this second stage,

the loss function for gradient update of the partial branch is

written as

L(2) = Lcan + Lseg + 5Lccan + 2Lccen + 2Lcseg. (2)

The accentuated consistency terms bring two benefits. First,

they enforce the concordance of the established affine-

invariant space by the partial branch to the space of full

branch, enabling the subsequent R&D process taking place

in geometrically aligned spaces. Second, they assist the net-

work to better understand semantic-consistent segmentation

for the partial branch. They resist the defective influence for

segmentation brought by the missing parts in the partial in-

put. During the implementation, this stage lasts another 200

epoches adopting the Adam optimizer with the learning rate

of 0.0006, taking 6 hours on a single NVIDIA 3090.

After the two stages, the Canonicalization and Segmen-
tation processes of both the full and the partial branches are

well learned. Thus, in the final stage, we freeze the two

modules and train the R&D process. During this stage, the

input of the full branch is a randomly selected full source

model Ssrc, and the partial input is a randomly selected par-

tial target model Stgt. The utilized R&D losses are

L(3) = Lretrieval + Ldeform. (3)

During the implementation, this stage lasts 200 epoches
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Figure 1. The network structure of ShapeMatcher.

Method Chair Table Cabinet Average

Uy et al. [6] 0.466 0.712 0.146 0.441

U-RED [3] 1.774 2.875 0.457 1.702

Ours 0.370 0.491 0.230 0.364

Table 1. Inference time analysis.

adopting the Adam optimizer with the learning rate of

0.0006, taking 6 hours on a single NVIDIA 3090.

Finally, in the testing, the partial branch generates the

retrieval tokens of the input partial target Stgt, after the

Canonicalization and Segmentation processes. Similarly,

the full branch encodes the retrieval tokens of each source

model Ssrc. After the region-weighted comparison, the

source shape Sr with the smallest distance score is iden-

tified as the best retrieval. Consequently, the deformation

module deforms Sr to the final output Sdfm
src which closely

matches the target input.

3. Run-time Analysis
Tab. 1 shows the average R&D time (seconds) on a sin-

gle NVIDIA 3090 on three categories with the database ca-

pacity of 494 (Chair), 793 (Table), and 123 (Cabinet). Re-

sults exhibit that ShapeMatcher possesses a faster inference

speed which attributes to the lightweight network design.

Moreover, the training time of ShapeMatcher is 19 hours in

total, which is detailed in the three stages in Sec. 2.

4. Visual Illustration of Segmentation
Fig. 2 shows some segmentation results of Shape-

Matcher. Our segmentation ensures semantic consistency

(a) (b)

(c) (d)

Figure 2. Visual illustration of segmentation results.

across instances, which further enables the accurate region-

weighted retrieval and the part center guided deformation.

5. Additional Qualitative Results on Synthetic
Cases

We provide additional qualitative results on synthetic

PartNet [5] to further exhibit the superiority of Shape-

Matcher against baselines Uy et al. [6] and U-RED [3]. Fig.

3, Fig. 4 and Fig. 5 present the scenarios when the occlu-

sion rates of the input targets are set to 50%, 25% and 0%

(full target inputs). Results show that ShapeMatcher con-

sistently outperforms all baselines with the most resembled

retrieved shape and tightly matched deformation.
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Figure 3. Additional qualitative results on PartNet [5] with the

occlusion rate of 50%.

Full       Partial Uy et al. U-RED Ours

Figure 4. Additional qualitative results on PartNet [5] with the

occlusion rate of 25%.

6. Qualitative Results on Real-world Cases

To fully investigate the performance of ShapeMatcher

handling real-world cases, we provide qualitative results

on Scan2CAD [1] against baselines Uy et al. [6] and U-

RED [3]. This visualization is made by rendering the R&D
shape results to the input image. It is revealed that Shape-

Matcher generates the most resembled R&D shapes given

occluded and noisy real-world scans under arbitrary poses.

Full       Partial Uy et al. U-RED Ours

Figure 5. Additional qualitative results on PartNet [5] with full

input targets.

Method Chair Table Cabinet Average

Uy et al. + can. 1.430 2.866 1.003 2.111

U-RED + can. 0.722 0.326 1.284 0.570

Ours + can. 0.201 0.152 0.514 0.202

Method |S| = 100 |S| = 200 |S| = 400 |S| = 800

Uy et al. 5.308 4.581 4.700 4.159

Ours 0.300 0.273 0.238 0.142

7. Evaluation on Canonical Shapes.
We also provide results on PartNet with Canonical

Shapes as input. In this way, we mainly compare the re-

trieval and deformation performance of ShapeMatcher with

other competitors. In real applications, the objects can

be canonicalized with off-the-shelf pose estimation meth-

ods [2, 4, 7], which however, usually lead to low-quality re-

sults due to the partial observations of objects.

8. Analysis of Database Diversity
We compare with Uy et al. [6] (M.) on the effect of

database size on PartNet. We use the same database split

with [6]. It is clear that generally larger database → better

results.

9. Limitations and Failure Cases.
Currently, due to the adopting of the Retrieval and De-

formation procedure, the performance of ShapeMatcher is

limited with the access of pre-established database. More-

over, ShapeMatcher gives failure cases under extreme oc-
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Figure 6. Qualitative results on Scan2CAD [1].

clusion conditions, as Fig. 8 shows. When the important

structures of the input target shape are heavily occluded, it

is hard for our method to complement it, so as the baseline

methods Uy et al. [6] and U-RED [3].
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