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1. Hyperparameters

We use the following hyperparameters for training the
3D Geometry Reconstruction networks: Ir = 0.00005,
Aphoto = 0.1, Ajandmark = 0.001, Agp = 0.1, Ajjgne = 0.001,
>\exp = 01, >\alb = 01, )\supervised = 1-’ )\nrm =0.1.

The texture completion and light normalization networks
are both trained with [ = 0.001.

The displacement map estimation is trained with Ir =
0.0001. The texture estimation networks are trained with:
lr = 00001, )\shading = 05, )‘SUP = 1, >\GAN = 1.

All modules were implemented in Pytorch, and trained
on two CUDA-enabled GPUs with 24 GB RAM. Used the
Adam optimizer [4] for training all networks.

2. FFHQ-UV-Intrinsics

In this section, we describe the process of generating our
new dataset named FFHQ-UV-Intrinsics, built from the
publicly available dataset FFHQ-UV [1]. The FFHQ-UV
dataset is composed of texture maps of 1K resolution, for
subjects sampled from the latent space of StyleGAN. These
texture contains evenly illuminated face images. However,
light, geometry and skin reflectance information are entan-
gled in the same texture making them less suitable for re-
lighting.

To obtain the intrinsic face attributes, we first re-targeted
the texture maps to our own topology and resize them to
512 x 512. Next, we apply the proposed light normalization
and Intrinsic texture maps estimation steps. We then up-
scale these texture maps to 1K resolution and retarget them
back to their original topology.

The resulting dataset, FFHQ-UV-Intrinsics, is being
publicly released for the research community. The dataset
contains diffuse, specular, ambient occlusion, translucency
and normal maps for 10K subjects. This is the first dataset
that offer rich intrinsic face attributes at high resolution and
at large scale, with the aim of advancing research in this
field.
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Figure 1. Impact of using AO and Translucency maps: with (top)
and without these maps (bottom).

Figure 2. Results on images with strong directional light. Top:
Input. Middle: Completed Texture. Bottom: Light-normalized.

3. Impact of AO and Translucency

Ambient Occlusion (AO) and Translucency maps are com-
monly used in modern rendering engines to improve real-
ism. Figure 1 shows renders for the same subject, with and
without these maps.

4. Challenging light conditions

Figure 2 shows results of the proposed light normalization
(LN) on challenging light conditions. We noticed that light
normalization effectively remove strong lights.

Figure 3 shows additional comparisons of the full model
vs the supervised(+LN) model. It depicts the same 7 sub-
jects of Figure 2. It shows that the full model is better at
removing residual light that the LN step could not remove.
This is most noticeable around the eyes and nose - see the



Figure 3. Additional comparison of estimated Diffuse and specular
albedos (same subjects as Fig. 2).

highlighted regions. These important improvements are lo-
calized around salient areas of the face, which explains why
quantitative results (Table 2 in the paper) are not largely dif-
ferent despite a significant qualitative improvement. These
results generalize across subjects and support the claim that
semi-supervised training improves quality over only super-
vised training.

5. Comparisons on additional subjects

Figures 4 to 10 show additional comparisons between our
method, FitMe [5] (second row) and Relightify [7] (third
row). For every method, we show the estimated geometry
and the rendering under 4 different environment maps.
Additionally, we perform geometry comparison on the
same 20 subjects for methods that only estimates geome-
try. Figures 11 and 12 show comparison of our estimated
geometry against DECA [3] , HRN [6] and Deep3D [2].



Figure 4. Comparison of the estimated geometry and renders, under 4 lighting conditions, between our method (first row), FitMe [5]
(second row) and Relightify [7] (third row) 3



Figure 5. Comparison of the estimated geometry and renders, under 4 lighting conditions, between our method (first row), FitMe [5]
(second row) and Relightify [7] (third row) 4



Figure 6. Comparison of the estimated geometry and renders, under 4 lighting conditions, between our method (first row), FitMe [5]
(second row) and Relightify [7] (third row) 5
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Figure 7. Comparison of the estimated geometry and renders, under 4 lighting conditions, between our method (first row), FitMe [5]
(second row) and Relightify [7] (third row) 6



Figure 8. Comparison of the estimated geometry and renders, under 4 lighting conditions, between our method (first row), FitMe [5]
(second row) and Relightify [7] (third row) 7



Figure 9. Comparison of the estimated geometry and renders, under 4 lighting conditions, between our method (first row), FitMe [5]
(second row) and Relightify [7] (third row) 8



Figure 10. Comparison of the estimated geometry and renders, under 4 lighting conditions, between our method (first row), FitMe [5]
(second row) and Relightify [7] (third row)
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Figure 11. Comparison of the estimated geometry between our method (second row), DECA [3] (third row), HRN [6] (fourth row) and
Deep3D [2] (last row) 10



) A O
GGl R Gl el ceal et ol Gl G

Figure 12. Comparison of the estimated geometry between our method (second row), DECA [3] (third row), HRN [6] (fourth row) and
Deep3D [2] (last row) 11
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