
SIGNeRF: Scene Integrated Generation for Neural Radiance Fields

Supplementary Material

This appendix offers supplementary information on
SIGNeRF. It delves into more intricate aspects of our im-
plementation (Sec. A), presents insights into the emergence
of multiview consistency (Sec. B), outlines the specialized
tools we have engineered (Sec. C), and elaborates on the
generated datasets (Sec. D).

Additional Material We wish to emphasize the inclu-
sion of two videos alongside this paper. Given the three-
dimensional nature of our results, these videos serve as the
most effective medium for their evaluation. We strongly en-
courage viewing:

• Explanation Video — A comprehensive guide through our
methods and pipeline.

• Results Video — A presentation of our results, including
comparative analyses.

A. Implementation Details

Image Diffusion In our approach, we integrate an inpaint-
ing version of ControlNet [15] with Stable Diffusion XL [8]
to synthesize images based on the mask and depth map
inputs. We have customized the implementation of the pub-
licly available SD WebUI API [1], which builds upon the
Diffusers library [13]. Notably, SIGNeRF is a general ap-
proach that also works with previous versions of Stable
Diffusion. For example, the ‘field’ scene with the generated
cows (Fig. 3), which was generated with Stable Diffusion
1.5 [9] and ControlNetInpaint [10].

Training SIGNeRF necessitates a pre-trained NeRF scene,
which we acquire by employing the nerfacto model from
Nerfstudio [12], undergoing 30, 000 iterations of training for
each scene. Subsequently, the SIGNeRF pipeline for scene-
integrated generation is utilized to create an edited dataset for
the NeRF scene (Sec. 3.3). It was discovered that for optimal
efficacy, a reference sheet comprising 5 images strikes an
effective balance between preserving image quality and pro-
viding adequate scene context. Following the creation of the
edited dataset, we opt to either fine-tune the existing NeRF
scene with the updated dataset or initiate training of a new
NeRF scene, depending on the choice of selection method.
We observe better results for object generation when training
the NeRF scene from scratch. Conversely, for the task in-
volving generative editing, fine-tuning the pre-trained NeRF
scene has shown to be more effective. In such cases, optimiz-
ers are re-initialized, and the LPIPS [16] loss is applied to
enhance scene consistency [5].

Generation Denoising S. ControlNet S. Guidance S.

Person - Sport 0.9 0.4 7.0
Person - Pirate [0.95, 0.5] [0.4, 0.8] 7.5
Person - Batman [0.95, 0.5] [0.4, 1.0] 6.0

Plushy - Ironman 0.9 1.0 7.0
Plushy - Tiger 0.6 1.0 7.0
Plushy - Gold 0.95 1.0 7.0

Bear - Grizzly 0.9 0.95 7.0
Bear - Polar 0.9 0.95 7.0
Bear - Panda 0.9 0.95 7.0
Bear - Rabbit 0.95 1.0 7.0

Field - Cow (SD 1.5) 0.7 7.5

Urban - House 1.0 0.8 7.0

Table A1. Scene List – Parameters used for each scene for the
image diffusion model, with denoising strength, ControlNet scale,
and guidance scale. Rows with multiple values indicate the need
for a second iteration, as discussed in Sec. 3.3. For the ‘field’ scene,
we used Stable Diffusion 1.5 [9], which does not have a denoising
strength parameter.

Generation Information The generational edit of the
NeRF scene can be controlled by several parameters pro-
vided by the image diffusion model, such as the denoising
strength, the ControlNet condition and the guidance scale.
We provide the parameters used for each scene in Tbl. A1.

Metrics For the quantitative evaluation of our results
(Sec. 4.4), we use two metrics, the first one is the CLIP text-
to-image similarity score [4] and the second one is a new
background preservation metric. This background preserva-
tion metric measures the background difference between a
render Iorg from the original NeRF and a render Iedit from
the edited NeRF. We use the corresponding mask M pro-
vided by the picked selection method (Sec. 3) and compute
the background preservation as:

PSNRbg = PSNR(Iorg · (¬M), Iedit · (¬M)) (1)

SSIMbg = SSIM(Iorg · (¬M), Iedit · (¬M)) (2)

B. Multiview Consistency
We want to clarify that ControlNet [15] was not fine-tuned
in any way. We found the multi-view consistency property

https://www.youtube.com/watch?v=TfblNlXNEDc
https://www.youtube.com/watch?v=BnZzxHEAr0E
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Figure B1. Inpainting Ablation & LoFTR Features – grid inpaint-
ing generation capabilities with & w/o ControlNet under certain
denoising levels (label top right). LoFTR keypoint correspondences
reflect the consistency between the sub images (last row). Zoom in
for details.

empirically by exploration. Initially, combining two images,
and later discovering how to reach greater consistency using
a grid. The reason why diffusion models show this multi-
view consistency isn’t entirely clear, but we have some hy-
potheses. The grid-based inpainting can achieve a degree
of multi-view consistency without ControlNet, although the
results become less consistent at higher denoising levels
(Fig. B1), therefore only allowing subtle edits. This suggests
that StableDiffusion [9] inherently supports some level of
multi-view consistency and 3D understanding as also shown
by [3, 14]. We assume that attention plays a crucial role,
further enforced by the inpainting mechanism focusing on
the relevant parts and ignoring scene elements by masking.
The depth condition in ControlNet further acts as a reference
for the model to infer orientation/shape/scale, even for high
denoising levels as the condition is not noised. Fine-tuning
to achieve even better results is interesting future work, but
we think that one of the most attractive properties of our ap-
proach is the possibility of achieving high-quality generation
with off-the-shelf image diffusion models.

Further there is no direct measurement of the quality of
the multiview consistency within the reference sheet. This is
also nontrivial to measure, else we could optimize for it in an
self supervised manner. We experimented with LoFTR [11]
correspondences between original, reference-sheet generated
and independent generated images. Averaged results show
that independent generation has 70% less correspondences
than the original images, while the reference sheet generated
images achieve 15% less correspondences. Nevertheless, we
believe the supplementary videos we provided substantiate
our claims of achieving multiview consistency. The feasi-
bility of conducting 3D reconstructions from the generated
images serves as a testament to this consistency. It is impor-
tant to acknowledge that while the images may not exhibit
perfect consistency, the underlying NeRF counteracts that
by aligning 3D consistent regions and discarding outliers.

“A brown rabbit ...”

Figure C2. Viewer – Outlining the placement of a proxy object
within an existing NeRF scene. The viewer is divided into a 3D
viewport at the center, a scene and selection column on the left and
a selection specific control column on the right.

C. Viewer
Our development includes a NeRF viewer designed to exam-
ine the trained NeRF scenes and facilitate the placement of
proxy objects or the selection of scene elements for modi-
fication. The viewer’s backend is based on Nerfstudio [12],
while the frontend is entirely novel, incorporating a suite
of advanced features. A depiction of the viewer interface
is presented in Fig. C2. Constructed as a React [7] appli-
cation, it leverages React Three Fiber [6], a React renderer
for Three.js [2], to facilitate 3D scene manipulation. The
Nerfstudio backend streams the NeRF data to the frontend,
where it is displayed centrally in the viewport. We have aug-
mented the backend to transmit not just the scene render but
also the corresponding depth map. This data enables us to
utilize a shader that merges the NeRF render with Three.js’s
native rendering, allowing for the visualization of occluded
elements within the NeRF scene in real-time.

Enhancements to the viewer include a scene hierarchy
and intuitive manipulation tools, which simplify the process
of placing proxy objects or delineating bounding boxes to
select regions of interest. Additionally, a bridge to SIGNeRF
was written, such that we can generate the reference sheet
and dataset with the information provided by the viewer.
Consequently, the viewer serves as a user-friendly platform
for performing scene-integrated generation on NeRF scenes.
We plan to release this viewer as open-source software, pro-
viding the community with a powerful tool for NeRF scene
editing.

D. Dataset Generation
SIGNeRF generates an updated NeRF image dataset with
the provided reference sheet to edit a NeRF scene. Our gen-
erative pipeline (Fig. 2) demonstrates this with a selection of
modified dataset images, but a completely revised dataset is
not showcased. In Fig. D3, we exhibit a fully edited dataset



Figure D3. Dataset Generation – Illustrating the consistency within edited views of an original NeRF dataset. The first row shows images
from the reference sheet, the rest are the views generated with the reference sheet.

of the ‘field’ scene (Fig. 3). Consistency is maintained across
the generated images; however, some outliers might occur.
These inconsistencies are minor over the dataset and are
generally resolved by the NeRF optimization process, which
learns to ignore such outliers. For complex scenes, the use
of an LPIPS [16] loss is beneficial to further improve the
consistency during the optimization.
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