
Supplemental Material

We show in this supplemental material additional qualitative
(Sec. A) and quantitative (Sec. B) results, detail our baseline
evaluation protocol (Sec. C), elaborate on the metrics used
in the main paper (Sec. D), show the architecture used in our
approach (Sec. E), and provide additional details regarding
the data (Sec. F).

A. Additional Qualitative Results
A.1. Additional Interactions

We show additional generated 3D human-object interactions
of our method in Fig. 2, with object geometry and text con-
dition on the left, and our generated sequence on the right.

A.2. Same Prompt, Different Interactions

We evaluate the ability of our method to generate diverse
interactions for a fixed text condition visually in Fig. 1, for
text prompt “Move a stool” and “Sit on a stool”. In the
ground truth training data, move is only done with one or
two hands, and feet; moving with the butt sometimes occurs
for the text description “Sit on a stool”.

Figure 1. Our method is able to generate diverse human-object
interactions for the same prompts.

B. Additional Quantitative Results
B.1. Evaluating Penetrations and Floating

Our method discourages penetration and floating implicitly,
by enforcing correct contact distances as a soft constraint at
train and test time. However, the exact fidelity and diversity
of our results is hard to capture with any single metric. Thus,
we evaluate multiple such metrics in the main paper (R-
Precision, FID, Diversity, MultiModality), and conduct a
perceptual user study to verify the metrics’ expressiveness.

Here, we provide an additional evaluation based on in-
tuitive physics-based metrics: Tab. 1 evaluates the mean
ratio of frames with some penetration as well as the ratio
of penetrating vertices overall, showing that penetrations
typically happens with small body parts (e.g., hands, which
also occurs in the ground-truth data). We also evaluate the
ratio of frames and vertices with human and object not in
contact, including floating and stationary objects, which is
expected to be close to the dataset ratio.

Results show similar penetration and floating between
our generations and ground-truth training data.

BEHAVE CHAIRS
Penetration Non-Contact Penetration Non-Contact

Frames Vertices Frames Vertices Frames Vertices Frames Vertices
Dataset 32.9% 4.1% 21.4% 86.2% 26.9% 1.1% 11.9% 70.4%
Ours 31.3% 3.0% 17.8% 93.3% 35.8% 4.2% 14.1% 74.3%

Table 1. Penetration and non-contact (including floating) ratios in
terms of frames as well as overall vertices vs ground-truth data.

B.2. Evaluating Contact

Tab. 2 evaluates our contact predictions using precision/recall
and distance metrics. We follow [4, 11, 12] to define contact
if ≤5cm from object. We also report mean ℓ1 error in contact
distance predictions. All metrics are reported for body parts
≤1m of the object, to focus on contact scenarios. Better
contact prediction corresponds with better HOI generations.
Note that none of our baselines predict contact distances.

BEHAVE CHAIRS
Approach Precision ↑ Recall ↑ Distance ↓ Precision ↑ Recall ↑ Distance ↓
Separate contact pred. 23.4% 25.6% 0.53 58.6% 49.1% 0.24
No contact weighting 29.5% 33.5% 0.34 60.6% 63.4% 0.10
No contact guidance 46.3% 39.2% 0.31 64.2% 70.2% 0.12
Ours 63.6% 59.5% 0.07 78.3% 84.5% 0.04

Table 2. Evaluation of predicted contact distances, in terms on
precision and recall (≤ 5cm distance), as well as mean contact ℓ1
error in meters.

B.3. Novelty of Generated Interactions

We perform an additional interaction novelty analysis to
verify that our method does not simply retrieve memorized
train sequences but is indeed able to generate novel human-
object interactions. To do so, we generate ≈ 500 sequences
from both datasets and retrieve the top-3 most similar train
sequences, as measured by the l2 distance in human body
and object transformation parameter space.

Fig. 3 shows the top-3 closest train sequences, along with
a histogram of l2 distances computed on our test set of ≈
500 generated sequences. In red, we mark the intra-trainset
distance between samples in the train set. We observe that
the distance between our generated sequences and the closest
train sequence is mostly larger than the intra-train distance.
Thus, our method is able to produce samples that are novel
and not simply retrieved train sequences.

B.4. SMPL Bodies vs. HumanML3D Skeletons

We observe slight pose jitter and foot skating in our ground-
truth training data (especially BEHAVE, captured with
Kinect sensors). As a result, our model reflects some of these
effects. Skeleton representations such as HumanML3D [3]
could tackle these artifacts, but do not work with contact
as effectively as SMPL bodies. Nevertheless, we train ours
with HumanML3D parameters for comparison in Tab. 3 (fit-
ting SMPL after for comparable evaluation) which leads to
degraded performance due to less effective contact guidance.



Figure 2. Additional qualitative evaluation. Our method produces diverse and realistic 3D human-object interaction sequences, given
object geometry and short text description of the action. The sequences depict high-quality human-object interactions by modeling contact,
mitigating floating and penetration artifacts.
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Figure 3. Human-Object Interaction Sequence Novelty Analysis. Performed on BEHAVE [1] (left) and CHAIRS [5] (right). We retrieve
top-3 most similar sequences from the train set, and plot a histogram of distances to the closest train sample. While sequences at the 20th
percentile still resemble the generated interactions, there is a large gap in the 80th percentile. We show the intra-trainset distance in red. Our
approach generates novel shapes, not simply retrieving memorized train samples.

C. Baseline Evaluation Setup

There is no previous approach to modeling 3D human-object
interactions from text and object geometry for direct com-
parison. Thus, we compare to the two closest methods, and
compare to them in multiple settings, for a fair comparison.

The most related approach is InterDiff [10]. Their setting
is to generate a short sequence of human-object interactions,
from an observed such sequence as condition, with geometry
but no text input. Their goal is to generate one, the most
likely, sequence continuing the observation. We use their
full approach, including the main diffusion training together
with the post-processing refinement step. We compare in two
different settings: First, in their native setup, running their
method unchanged and modifying ours to take in geometry
and past sequence observation instead of text (Motion-Cond.
HOI in Tab. 1 main). Then, we modify their approach to take
in geometry and text, replacing their past motion encoder
with our CLIP-based text encoder (Text-Cond. HOI in Tab. 1
main). We observe that our method is able to outperform

InterDiff in both scenarios, for both datasets.

We additionally compare to MDM [9], a recent diffusion-
based state-of-the-art human motion generation approach.
Their approach is based on a transformer encoder formu-
lation, using each human body as a token in the attention.
We run their method on SMPL parameters and first com-
pare in their native setting, only predicting human motion.
We compare to the human motion generated by our method
which is trained to generate full human-object interactions
(Text-Cond. Human Only in Tab. 1 main). We also com-
pare to human motion sequences generated by InterDiff in
this setting. We see that our method is able to outperform
both baselines even in this setting, demonstrating the added
benefit of learning interdependencies of human and object
motion. For the comparison in our setting, we modify MDM
by adding additional tokens for the objects to the attention
formulation. Our approach performs more realistic and di-
verse sequences in both settings which better follow the text
condition.

BEHAVE CHAIRS
Representation R-Prec. (top-3) ↑ FID ↓ Diversity → MModality → R-Prec. (top-3) ↑ FID ↓ Diversity → MModality →
Ours (HumanML3D) 0.33 11.94 2.15 3.75 0.48 12.83 4.39 5.11
Ours 0.62 6.31 6.63 5.47 0.74 6.45 8.91 5.94

Table 3. Ours (using SMPL bodies) vs. using HumanML3D [3] skeletons and fitting SMPL bodies afterwards. While HumanML3D is
designed to reduce jitter and foot skating, it leads to degraded performance in our scenario due to less effective contact guidance.



D. Fidelity and Diversity Metrics

We base our fidelity and diversity metrics R-Precision, FID
score, Diversity, and MultiModality on practices established
for human motion generation [2, 3, 9], with minor modifi-
cations: We use the same networks used by these previous
approaches, and adapt the input dimensions to fit our feature
lengths, F = 79 when evaluating human body motion only,
and F = 79 + 128 + 9 = 216 (SMPL parameters, contact
distances, object transformations) for full evaluation in the
human-object interaction scenario.

E. Architecture Details

Fig. 4 shows our detailed network architecture, including
encoder, bottleneck, and decoder formulations.

F. Data Details

F.1. Datasets

CHAIRS [5] captures 46 subjects as their SMPL-X [6]
parameters using a mocap suit, in various settings interacting
with a total of 81 different types of chairs and sofas, from
office chairs over simple wooden chairs to more complex
models like suspended seating structures. Each captured
sequence consists of 6 actions and a given script; the ex-
act separation into corresponding textual descriptions was
manually annotated by the authors of this paper. In total,
this yields ≈ 1300 sequences of human and object motion,
together with a textual description. Every object geometry
is provided as their canonical mesh; we additionally gener-
ate ground-truth contact and distance labels based on posed
human and object meshes per-frame for each sequence. We
use a random 80/10/10 split along object types, making sure
that test objects are not seen during training.

BEHAVE [1] captures 8 participants as their SMPL-H [8]
parameters captured in a multi-Kinect setup, along with the
per-frame transformations and canonical geometries of 20
different object with a wide range, including yoga mats and
tables. This yields ≈ 130 longer sequences. We use their
original train/test split.

F.2. Object Geometry Representation

We represent object geometry as a point cloud, to be pro-
cessed by a PointNet [7] encoder. For this, we sample
N = 256 points uniformly at random on the surface of
an object mesh. Each object category is sampled once as a
pre-processing step and kept same for train and inference.
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Figure 4. Network architecture specification.
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