
Supplemental Material

We show in this supplemental material additional qualitative
(Sec. A) and quantitative (Sec. B) results, detail our base-
line evaluation protocol (Sec. C), elaborate on the 3D quality
metric (Sec. D), demonstrate the ability of our method to gen-
eralize to multi-actor scenarios (Sec. E), verify our method’s
robustness to 2D detection results (Sec. F), show the archi-
tecture used in our approach (Sec. G), and provide additional
details regarding the data (Sec. H).

A. Additional Qualitative Results

Fig. 1 shows additional qualitative results of our method, on
both MPII Cooking 2 [14] (left column) and IKEA-ASM [1]
(right column), as compared to pose baselines DLow [20],
GSPS [12], and STARS [19].

B. Additional Quantitative Results

B.1. Characteristic Poses

Analogous to Tab. 2 in the main paper, Tab. 5 shows an ab-
lation on pose timings and compares our approach of using
characteristic poses to poses taken at regular time intervals
(“uncoupled”) as well as in the middle or at a random time
of an action, on IKEA-ASM [1] data. To further illustrate
this point, Tab. 1 shows additional ablations: Poses predicted
at random points in the sequence, but at most 1s from the
closest characteristic pose (“centered on the characteristic
pose”) and predicting characteristic poses but evaluating in-
terpolated regularly spaced poses. Both demonstrate that
the usage of characteristic poses improves performance com-
pared to other approaches while still being outperformed by
directly predicting characteristic poses.

2D 3D Action Accuracy
Poses MPJPE [px] ↓ Quality ↑ top-1 ↑ top-3 ↑

Uncoupled 75 0.29 28% 48%
Middle 58 0.45 26% 43%

Random 67 0.37 22% 42%
Centered on Char. Poses 69 0.33 28% 50%
Interp. from Char. Poses 62 0.13 29% 51%

Characteristic 50 0.55 29% 51%

Table 1. Ablation on pose forecasting on MPII Cooking II [14]. We
consider pose prediction following state-of-the-art pose forecasting
as decoupled from actions (uncoupled), as well as poses coupled to
actions in various fashions: middle (the middle pose of an action
range), random (a random pose of the action), random but at most
1s from the closest characteristic pose (centered), regularly spaced
poses interpolated from characteristic pose prediction, and our
characteristic pose prediction.

B.2. Lifting 2D Predictions to 3D

In Tab. 1 in the main paper, we compare to first lifting input
poses into 3D, then performing 3D motion prediction. Tab. 2
evaluates the other way around: Predicting 2D poses and
action labels jointly with [21], then lifting the predicted 2D
poses into 3D with RepNet [17] for evaluation. Our method
outperforms both approaches.

MPII Cooking II IKEA ASM
2d 3d Action Accuracy 2d 3d Action Accuracy

Approach MPJPE [px] ↓ Quality ↑ top-1 ↑ top-3 ↑ MPJPE [px] ↓ Quality ↑ top-1 ↑ top-3 ↑
[21] + [17] 63 0.50 27% 43% 53 0.21 22% 46%
Ours 50 0.55 29% 51% 40 0.31 29% 50%

Table 2. Our approach of jointly forecasting 3D poses and actions
achieves better performance compared to 2D pose + action forecast-
ing [21] and then lifting forecasted 2D poses into 3D using [17].

B.3. Input Noise Ablation

Tab. 3 shows the effect using a noise vector as additional
input to our method. It encourages more diversity in predic-
tions, which benefits pose and action forecasting.

B.4. Input Objects Ablation

Inputting initially observed objects slightly improves results
(Tab. 3), due to added context for broad actions like “add,”
e.g.“add ingredient” vs. “add water to pot.”.

MPII Cooking II IKEA ASM
2d 3d Action Accuracy 2d 3d Action Accuracy

Approach MPJPE [px] ↓ Quality ↑ top-1 ↑ top-3 ↑ MPJPE [px] ↓ Quality ↑ top-1 ↑ top-3 ↑
No Objects 61 0.52 28% 51% 42 0.30 29% 50%
No Noise 55 0.49 29% 50% 48 0.29 30% 51%
Ours 50 0.55 29% 51% 40 0.31 29% 50%

Table 3. Ablations studies with no object input and no noise input.

B.5. Statistical Action Baselines

We additionally evaluate “Zero Velocity” and “Train Aver-
age” for action labels, analogous to forecasted poses, i.e.
repeating the last action label and repeating the most fre-
quent train action label, in Tab. 4. These baselines perform
particularly poorly since actions are rarely repeated or fixed
for entire sequences.

MPII Cooking II IKEA ASM
Approach top-1 ↑ top-3 ↑ top-1 ↑ top-3 ↑
Repeat Last Input 9% 43% 8% 35%
Most Common in Train 6% 10% 7% 26%
Ours 29% 51% 29% 50%

Table 4. Statistical action baselines: (1) Repeat the last input action
label (2) Using the most common action label of the train set.

C. Baseline Evaluation Details
C.1. State-of-the-Art Pose Forecasting

We evaluate the performance of our baselines using the same
input data that is available to our method. Pose forecast-
ing baselines DLow [20], GSPS [12], and STARS [19] are
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Figure 1. Additional qualitative comparison between DLow [20], GSPS [12], STARS [19], and our method on two sequences (left on MPII
Cooking 2 [14], right on IKEA-ASM [1]). For each method, we show a the 3D predicted pose projected into the 2D target view, without
background for a pose only version (small) as well as with background for context (full size).

trained and evaluated on sequences of our manually anno-
tated characteristic poses. Since there is no ground-truth
3D pose data available, we first use RepNet [17], a state-of-
the-art 3D pose estimation method, to retrieve 3D skeletons
from our 2D characteristic poses. We train this method from
scratch using the same database of valid 3D poses that is
available to our method, allowing for a fair comparison.

C.2. State-of-the-Art Action Label Forecasting

We train action baselines AVT [5] and FUTR [6] using se-
quences of our characteristic pose frames together with the
corresponding action labels as input. For AVT, we use their
default parameters used by the original authors for their ab-
lation on third-person dataset 50Salads/Breakfast, inputting
our RGB frames instead. For a fair comparison, we also sup-



2D 3D Action Accuracy
Poses MPJPE [px] ↓ Quality ↑ top-1 ↑ top-3 ↑

Uncoupled 64 0.30 28% 48%
Middle 47 0.35 28% 47%

Random 49 0.24 28% 49%
Characteristic 41 0.35 29% 50%

Table 5. Ablation on pose forecasting, on the IKEA-ASM [1]
dataset. We consider predicting poses following state-of-the-art
pose forecasting in a decoupled fashion from actions (uncoupled),
as well as poses coupled to actions in various fashions: middle
(the middle pose of an action range), random (a random pose of
the action), and our characteristic pose prediction, which benefits
action prediction the most.

ply the action and object history for each step by encoding
both label sequences with a small encoder (a single linear
layer) each and fuse these features with the image features
generated by the AVT encoder. For FUTR, we first generate
I3D features [3] from our RGB frames and concatenate them
with action and object history after encoding these in the
same way as for AVT.

We then train two variants of both methods: One with
the raw RGB frames, action history, and object history as
input (“AVT RGB” and “FUTR RGB” in the main results
figure), and one with additional 2D skeleton input (skeletons
rendered on top of the RGB frames) from the skeletons that
we extract with OpenPose [2] (“AVT RGB+Skeleton” and
“FUTR RGB+Skeleton”).

C.3. Supervised 3D Pose Lifting

For better comparability, we used weakly supervised ap-
proach [17] for pose lifting. This is important, since there
is no ground-truth coupling between 2D and corresponding
3D action poses in our setting. Nevertheless, we compare to
baselines [12, 19, 20] in Tab. 6 with poses lifted using fully
supervised pre-trained SPIN [10]; our approach outperforms
even these improved baselines in terms of 2D MPJPE.

MPII Cooking II IKEA ASM
2d 3d 2d 3d

Approach MPJPE [px] ↓ Quality ↑ MPJPE [px] ↓ Quality ↑
SPIN [10] + DLow [20] 81 0.89 43 0.43
SPIN [10] + GSPS [12] 74 0.66 45 0.29
SPIN [10] + STARS [19] 66 0.80 41 0.40
Ours 50 0.55 40 0.31

Table 6. Comparison to pose baselines using fully-supervised
pre-trained 3D pose estimation method SPIN [10]. In our main
experiments, we instead compare to weakly supervised baseline
RepNet [17] for a fair comparison.

D. 3D Quality Metric Details
For our pose quality metric, we use a 3-layer MLP binary
classifier of 3D poses. Training poses are randomly sam-
pled from ground-truth (real) and predicted (fake) collected

during the training process of our method and all baselines,
producing a total of 100k real and fake poses each. Fake
poses exhibit a range of small to large unrealistic deforma-
tions, depending on when they were sampled, ranging from
random joint placements to widely inconsistent bone lengths
to unnatural joint angles to only minor inconsistencies in the
bone lengths. The classifier is trained once and then used to
evaluate all methods, to ensure a fair comparison.

As an additional intuitive metric we show the mean ab-
solute bone length difference of right and left body in 3D
in Tab. 7. We observe that this metric correlates with our
classifier-based quality.

MPII Cooking II IKEA ASM
Approach Symm. [mm] ↓ Quality ↑ Symm. [mm] ↓ Quality ↑

RepNet [17] + DLow [20] 13 0.72 45 0.31
RepNet [17] + GSPS [12] 18 0.66 56 0.15

RepNet [17] + STARS [19] 16 0.62 46 0.27
No 3D Adversarial Loss 75 0.10 66 0.05
2D Projection Loss Only 57 0.21 61 0.09

No Action Loss 22 0.53 39 0.29
Ours 22 0.55 39 0.31

Table 7. Additional quality metric and its correlation to our
classifier-based metric: Absolute bone length difference between
right and left body, compared to pose baselines and ablations.

E. Multi-Actor Interaction Scenario

In addition to our experiments with single human actors in
the main paper, we show here that our approach is able to
generalize to multi-actor scenarios, with minor modifica-
tions. We show this in Tab. 8 with additional dataset TICaM
[9] where driver and passenger are interacting in an in-car
driving scenario (actions include “talking”, various hand-
offs). Our modifications are: (1) Additional encoder and
decoder for the second person (2) Interaction pooling intro-
duced in Social GAN [7]. Our modified method outperforms
simple combinations of previous works, with and without
interaction modelling, demonstrating the wide applicability
of our method.

2d 3d Action Accuracy
Approach MPJPE [px] ↓ Quality ↑ top-1 ↑ top-3 ↑
FUTR RGB + Skeleton - - 38% 64%
RepNet + STARS 89 0.34 - -
Ours (No Interactions) 68 0.40 40% 67%
Ours (Interaction Modeling) 58 0.41 48% 73%

Setting

Table 8. Our approach can also be applied to multi-actor scenarios:
We demonstrate improved performance on suitable dataset TICaM
[9], with and without explicit interaction modeling.



F. 2D Input Pose Quality
In Fig. 9, we replace OpenPose with AlphaPose [4] and
Detectron2 [18], both only slightly changing the final results,
indicating that our method does not depend on a specific
2D pose detector. We also experiment with added random
noise to OpenPose: our method remains relatively robust.
The coupled changes in pose and action accuracy further
demonstrate the effectiveness of our joint feature learning.

MPII Cooking II 2d 3d Action Accuracy
Approach MPJPE [px] ↓ Quality ↑ top-1 ↑ top-3 ↑
OpenPose + max. 20px noise 59 0.45 26% 47%
OpenPose + max. 10px noise 57 0.47 26% 46%
Ours (using Detectron2) 47 0.54 28% 55%
Ours (using AlphaPose) 46 0.57 28% 56%
Ours (using OpenPose) 50 0.55 29% 51%

Table 9. Robustness of our method to different 2D pose detectors
Detectron2 [18] and AlphaPose [4] as well as randomly added
2D noise. This only slightly affects our pose and action accuracy,
further demonstrating the effectiveness of our joint feature learning.

G. Architecture Details
Generator Network Fig. 2 shows our generator architecture
in detail with input and output dimensions for linear layers,
and the slope for leaky ReLU layers.
Critic Network Our adversarial critic network processes
generator outputs with 4 linear layers and 3 kinematic chain
layers which are designed to encourage correct bone lengths
(as shown in [17]), in parallel. 2 linear layers then combine
both outputs and produce the final critic score.

H. Data Details
H.1. Camera Parameters

While intrinsic camera parameters are often available in
captured image data, the camera parameters for captured
video were not available from the MPII Cooking 2 [14]
dataset to use for pose projection. We thus optimized for
intrinsic camera parameters from the video sequence data
in correspondence with the 3D scene reconstruction of the
empty kitchen environment, as given by [15]. For IKEA-
ASM [1], we use the provided intrinsic camera parameters
directly. Note that camera parameters are only required to
be fixed within a sequence (i.e. no moving camera) but can
change between sequences.

H.2. 3D Pose Database Alignment

We use popular 3D pose datasets Human3.6m [8],
AMASS [11], and GRAB [16] for our database of uncorre-
lated valid 3D poses. All poses are pre-processed to follow
the OpenGL coordinate system and aligned with respect to
the neck joint.

Ours OpenPose Human3.6m SMPL-X
Idx Name Idx Name Idx Name Idx Name
0 head 0 nose 15 head 15 head
1 neck 1 neck 13 thorax 12 neck
2 right shoulder 2 right shoulder 25 right shoulder 17 right shoulder
3 right elbow 3 right elbow 26 right elbow 19 right elbow
4 right hand 4 right hand 27 right wrist 42 right index 3
5 left shoulder 5 left shoulder 17 left shoulder 16 left shoulder
6 left elbow 6 left elbow 18 left elbow 18 left elbow
7 left hand 7 left wrist 19 left wrist 27 left index 3
8 hip 8 mid-hip 0 hip 0 pelvis

Table 10. Human skeleton joint layout used in our experiments, for
both 2D and 3D skeletons.

H.3. Pose Joint Layout

We use the 9 upper-body joints of the native OpenPose [2]
joint layout for skeletons in 2D, and adapt skeletons in our
3D database to use the same format. Tab. 10 shows the
correspondence between our joint layout, OpenPose [2],
Human3.6m [8], and SMPL-X [13]. 3D datasets AMASS
[11] and GRAB [16] provide human bodies in SMPL-X for-
mat; we first extract their skeleton joints using their publicly
available code and then convert it into our layout using the
correspondences in Tab. 10.

H.4. MPII Cooking 2 Details

We use action labels as annotated in the 2D cooking action
dataset MPII Cooking 2 [14]. These annotations provide
action labels (87 classes) for frame ranges in each sequence
as well as the involved objects (187 classes). We first cluster
similar actions together, yielding a total of 37 action clusters,
which we then use as action classes in our experiments.

In addition, since our goal is to forecast upper-body ac-
tions with objects in the foreground, we remove instances
of poses and corresponding actions that occur in the back-
ground - e.g., when taking out objects from the cupboard, or
from the fridge.

In total, there are 272 cooking action sequences; we create
a random train/val/test split along sequences with a ratio of
70% / 15% / 15%, yielding 190, 40, 40 sequences for each
set.

H.5. IKEA-ASM Details

We use action labels as annotated in the IKEA furniture
assembly dataset IKEA-ASM [1]. These annotations provide
action labels (31 classes) for frame ranges in each sequence;
we use them without explicit object information since each
action already encodes its associated object.

In total, there are 370 furniture assembly action se-
quences; we create a random train/val/test split along se-
quences with a ratio of 70% / 15% / 15%, yielding 227, 48,
48 sequences for each set.
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