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Supplementary Material

A. Model Details

We provide the details of the model architectures as well
as some design choices for the experiments with the
DETR3D [6] and PETR [5] detector.

DETR3D For all DETR3D-based [6] experiments, we
use ResNet-101 [2] as the backbone. A FPN [4] image
neck is attached to the ResNet-101 which outputs multi-
scale feature maps {C2, C3, C4, C5} with downsampling
rates { 1

4 ,
1
8 ,

1
16 ,

1
32} for the detection head. The detection

head consists of 6 transformer decoder layers. Each decoder
layer has a query-to-query self-attention, a DETR3D-based
query-to-image cross-attention, and an edge-augmented
cross-attention. The box regression and classification heads
with two-layer MLPs are attached to the output of the
DETR3D-based query-to-image cross-attention. All de-
coder layers have an embedding dimension of 256 and a
feed-forward dimension of 512. Following DETR3D [6],
the query embeddings and query position encodings of the
detection queries are randomly initialized, and the initial
reference points are estimated from their initial position en-
coding using a linear layer.

PETR For all PETR-based [5] experiments, we utilize
VoVNetV2-99 [3] as backbone and a FPN [4] image neck.
The FPN feature map C5 is upsampled and fused with C4,
producing the final single-scale feature map with the down-
sampling rate 1

16 for the detection head. The architecture
of the detection head is the same as in the DETR3D-based
experiments, except that the query-to-image cross-attention
is based on PETR [5] with 3D position encodings. The em-
bedding dimension is 256 and the feed-forward dimension
is 2048. In contrast to [6], PETR [5] generates query po-
sition encodings using the uniformly initialized reference
points while initializing detection queries. In the query
propagation phase, we adhere to this setting to update the
query position encodings using the updated reference point
positions at each timestamp. We found this design choice
to be essential for ensuring the effectiveness of the PETR-
based ADA-Track.

B. Additional Experiments

We provide additional experiments of ADA-Track to vali-
date our system design. All experiments are evaluated on
the nuScenes validation set with the DETR3D detector.

bicycle bus car motorcycle pedestrian trailer truck average

TBA-Baseline 0.549 0.553 0.706 0.499 0.597 0.276 0.532 0.530
ADA-Track 0.551 0.675 0.725 0.545 0.613 0.336 0.571 0.574

Table A1. IDF1 for all categories on the nuScenes validation set.

Params FLOPS Inference time

TBA-Baseline 59.73 M 1024 G 296 ms
TBD-Baseline 63.72 M 1025 G 297 ms

ADA-Track 63.73 M 1054 G 308 ms

Table A2. Complexity and runtime analysis based on DETR3D
with ResNet-101 backbone and image resolution of 1600 × 900.
Runtime is measured on an RTX 2080ti.

B.1. IDF1 Analysis

Approaches with an explicit association module typically
exhibit a relatively higher IDS than TBA-based methods,
as illustrated in our analysis in Tables 1 and 2. However,
this discrepancy might stem from the evaluation protocol
of nuScenes tracking benchmark [1] which computes IDS
for each category at the recall where the highest MOTA
is achieved. Nevertheless, different methods do not nec-
essarily achieve the best IDS while achieving the highest
MOTA due to trade-offs between FP, FN, and IDS. To ver-
ify the consistency of association of ADA-Track compared
to TBA-Baseline, we show a supplementary comparison of
IDF1 across all categories in Table A1. In comparison to
TBA-Baseline, we observe an 8.3%P higher average IDF1
and consistently higher IDF1 for all categories, especially
for large objects such as buses and fast-moving objects such
as motorcycles. Moreover, the IDF1 improvement of ADA-
Track is particularly noteworthy for categories with lower
occurrences (except for cars and pedestrians), showing its
ability to handle class imbalance. The analysis based on
IDF1 underscores the efficiency of ADA-Track in associat-
ing tracks consistently.

B.2. Complexity and runtime analysis

ADA-Track and TBD-Baseline require additional Edge-
Augmented Cross-Attention modules compared to TBA-
Baseline. We compare the number of parameters, FLOPs
and runtime of ADA-Track with TBA-Baseline and TBD-
Baseline in Table A2. As shown in Table A2, ADA-Track
only adds about 6.7% parameters, 2.9% FLOPs, 4.1% in-
ference time to TBA, and even less compared to TBD.



rel. pos. encoding AMOTA↑ AMOTP↓ Recall↑ MOTA↑ IDS↓
Center 0.366 1.392 0.510 0.325 916
None 0.341 1.442 0.474 0.300 1442

Appearance 0.358 1.417 0.510 0.318 1088

Box 0.378 1.391 0.507 0.343 981

Table A3. Ablation study on appearance and geometric features
to build the relative positional encoding in the edge-augmented
cross-attention. Our choice is Box (last row) which uses all the
box parameters to build geometric-based relative position encod-
ing. Center denotes that only box centers are used. None denotes
no relative position encoding. Appearance uses the query feature
differences as appearance-based relative position encoding.

Edge feat. iteration AMOTA↑ AMOTP↓ Recall↑ MOTA↑ IDS↓
0.346 1.421 0.498 0.310 1275

✓ 0.378 1.391 0.507 0.343 981

Table A4. Ablation study on the iterative refinement of edge fea-
tures over decoder layers.

attention AMOTA↑ AMOTP↓ Recall↑ MOTA↑ IDS↓det → track track → det

0.367 1.404 0.504 0.320 936
✓ 0.364 1.411 0.503 0.317 899

✓ 0.378 1.388 0.513 0.344 904

✓ ✓ 0.378 1.391 0.507 0.343 981

Table A5. Ablation study on computing attention across different
query types in self-attention.

Therefore, the additional computational overhead of ADA-
Track is minimal. Despite this slight increase in complexity,
the performance gain of ADA-Track is much more signif-
icant, e.g. 17.6% higher AMOTA than TBA-Baseline with
DETR3D (see Table 1).

B.3. Ablation Studies

Appearance and geometry cues for association We in-
vestigate the role of appearance and geometric cues in
the learnable association module based on edge-augmented
cross-attention. As shown in Table A3, using only the cen-
ter position (first row) instead of the complete box param-
eters (fourth row) leads to 1.2%P decrease in AMOTA,
which underscores the significance of leveraging the en-
tire box information for robust data association. If geomet-
ric features are excluded (second row), the zero-initialized
edge features are refined exclusively through appearance-
based query features layer-by-layer, resulting in a substan-
tial performance drop across all metrics when compared to
the use of geometric-based edge features. This observa-
tion highlights the usage of geometric features in enhanc-
ing the model’s ability to distinguish between object in-

stances. Even without geometric features, using relative po-
sitional encodings derived from query feature differences
(third row) yields a notable AMOTA increase of 1.7%P
compared to scenarios without relative positional encoding
(second row). This finding shows the importance of the ex-
act edge feature encoding in the model architecture of edge-
augmented cross-attention.

Edge feature refinement Table A4 illustrates the effec-
tiveness of the iterative refinement of edge features over de-
coder layers. In the case where edge features remain in-
dependent within each decoder layer (first row), there is
a notable decrease in AMOTA by 3.2%P when compared
to scenarios where edge feature refinement occurs across
layers (second row). This experiment shows the potential
for iterative optimization of data association across decoder
layers, aligning with the fundamental design of our archi-
tecture. In addition, since the edge features also participate
in the query feature update in the edge-augmented cross-
attention, the refinement of the edge features itself also con-
tributes to the iterative refinement of query representations,
which also improves the overall performance.

Masked self-attention The self-attention layer in ADA-
Track facilitates temporal modeling between queries. As
shown in Table A5, when we use only the attention from
track to detection queries in the self-attention layer (third
row), we observe no changes in AMOTA compared to our
default setting (fourth row). The other metrics are even
slightly better, indicating that this setting is slightly prefer-
able compared to the default setting that we used in all other
experiments. Conversely, using only the attention from de-
tection to track queries (second row) results in a noticeable
drop of 1.4%P in AMOTA. The results are similar when at-
tention is not computed across different query types (first
row). These results show that self-attention is important for
enhancing detection queries, enabling detection queries to
incorporate information from past tracks and frames.

Association module Table A6 compares Edge-
Augmented Cross-Attention with alternative association
modules. We replace the Edge-Augmented Cross-Attention
with association networks utilizing the difference or
concatenation of detection and track query features (node
features). In both cases, we use an MLP and sigmoid to
obtain the association scores S as before. Using only the
difference or concatenation of node features results in a
significant performance drop, highlighting the necessity
of using explicit edge features and the effectiveness of
Edge-Augmented Cross-Attention in data association.

Robustness against appearance change One of the
biggest challenges of MOT in autonomous driving is ego-



Association module AMOTA↑ AMOTP↓ Recall↑ MOTA↑ IDS↓

Node Difference 0.355 1.421 0.483 0.314 1249
Node Concatenation 0.349 1.421 0.451 0.306 977

Edge-Aug. Cross Attn. 0.378 1.391 0.507 0.343 981

Table A6. Ablation study on different association modules.

ego speed AMOTA↑ AMOTP↓ Recall↑ MOTA↑ IDS↓

≥ 5m/s 0.377 1.378 0.512 0.355 589
≥ 0m/s 0.378 1.391 0.507 0.343 981

Table A7. Abaltion study on the impact of ego-motion.

ND AMOTA↑ AMOTP↓ Recall↑ MOTA↑ IDS↓

100 0.341 1.437 0.461 0.301 1213
200 0.370 1.397 0.471 0.327 847
300 0.378 1.391 0.507 0.343 981
400 0.377 1.395 0.486 0.329 805
500 0.377 1.397 0.514 0.335 919

Table A8. Ablation study on the number of detection queries ND .

motion, where the camera mounting points move with the
ego-vehicle, leading to appearance changes of observed ob-
jects due to varying observation angles. We evaluate the
sequences where the average speed of the ego-vehicle is
≥ 5m/s, indicating significant appearance changes in ob-
served objects due to ego-motion. As shown in Table A7,
ADA-Track achieves similar AMOTA for sequences with
ego-motion (≥ 5m/s) compared to all scenes (≥ 0m/s).
Some secondary metrics are even better for the sequences
with ego-motion.

Number of queries Table A8 shows the comparison
of varying the number of detection queries ND, where
AMOTA increases until ND = 300. Using fewer detection
queries typically causes missed detections and lower detec-
tion performance, inevitably affecting the tracking perfor-
mance. However, continuing to increase the number of de-
tection queries does not yield further improvements. This
is attributed to the risk of introducing an imbalance in the
classification for the data association task, potentially re-
ducing the association performance. As a result, we opt for
ND = 300 as the default setting.

Association loss weight We evaluate the weight of the
association loss λasso in Table A9. Using λasso = 5 and
λasso = 10 yield the same AMOTA of 0.378. Lower or
higher association loss weights result in performance drops
with different ranges, which can be attributed to the imbal-
ance of the multi-task training. We choose λasso = 10 as

λasso AMOTA↑ AMOTP↓ Recall↑ MOTA↑ IDS↓

2 0.371 1.408 0.507 0.332 1000
5 0.378 1.386 0.518 0.331 922

10 0.378 1.391 0.507 0.343 981
20 0.377 1.389 0.504 0.336 920
50 0.365 1.399 0.516 0.327 911

Table A9. Ablation study on the association loss weight λasso.

γ AMOTA↑ AMOTP↓ Recall↑ MOTA↑ IDS↓

0.0 0.358 1.404 0.496 0.323 1659
0.5 0.359 1.409 0.506 0.323 1118
1.0 0.378 1.391 0.507 0.343 981
1.5 0.363 1.384 0.516 0.326 984
2.0 0.366 1.406 0.465 0.322 952

Table A10. Ablation study on the focusing parameter γ of the
association loss.

TD AMOTA↑ AMOTP↓ Recall↑ MOTA↑ IDS↓

2 0.361 1.421 0.495 0.337 1246
3 0.369 1.404 0.496 0.338 1070
4 0.375 1.395 0.503 0.340 1072
5 0.378 1.391 0.507 0.343 981
6 0.373 1.392 0.501 0.337 934

Table A11. Ablation study on the duration of keeping unmatched
tracks Td.

τnew AMOTA↑ AMOTP↓ Recall↑ MOTA↑ IDS↓

0.0 0.203 1.421 0.347 0.213 1575
0.1 0.248 1.409 0.380 0.246 1827
0.2 0.315 1.386 0.462 0.280 1520
0.3 0.365 1.379 0.495 0.327 1217
0.4 0.378 1.391 0.507 0.343 981
0.5 0.364 1.424 0.489 0.337 869

Table A12. Ablation study on the score threshold for track spawn-
ing τnew.

default.

Focusing parameter in association loss We use the focal
loss as the association loss Lasso with a focusing parameter
of γ = 1.0. This choice is validated in Table A9, where
lowering or raising the focusing parameter γ results in a no-
table decrease of AMOTA, ranging from 1.2%P to 2.0%P.
Therefore γ = 1.0 is a reasonable choice for effectively
controlling the class imbalance in the data association task.

Hyperparameters during inference During inference,
we use two hyperparameters: the number of frames until



unmatched tracks are kept and the score threshold τnew to
spawn new tracks. We evaluate both hyperparameters in Ta-
ble A11 and Table A12. As shown in Table A11, low values
of Td cause a significant performance drop caused by the in-
sufficient handling of occluded objects. The AMOTA peaks
at Td = 5 and a higher value again leads to a decrease of
AMOTA, which might keep too many tracks and cause a
higher class imbalance in the data association. As for the
score threshold τnew, when setting τnew ≤ 0.3, the tracker
initializes excessive noisy detections, which results in a sig-
nificant performance drop. We choose τnew = 0.4 as the
default value.
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