
Holistic Autonomous Driving Understanding by Bird’s-Eye-View Injected
Multi-Modal Large Models

Supplementary Material
Head 1SOTA

BEV methods

Head NSOTA
BEV methods

Head 1
SOTA

BEV methods
Head N

(a) Separate model (b) Multi-head

Figure 1. (a) Separate SOTA BEV methods. (b) Multi-head SOTA
BEV methods.

1. comparison between ours and existing BEV
SOTAs without LLMs

❶ Ours surpass BEV SOTAs in perception tasks
with two benefits: First, our method can handle
complex perception tasks involving reasoning or hu-
man interaction (‘What is the closest car near

to <car>[675,475,994,755]’, see more examples in
Supplementary Material), while BEV SOTAs cannot. Sec-
ond, our unified model efficiently addresses diverse tasks
without task-specific training, unlike BEV SOTAs requiring
separate training for each task (see Fig.1(b)-(c)). ❷ Even
directly compared with specialized BEV SOTAs in Table 1,
our model also shows competitive performance. BEV SO-
TAs will be integrated as tools in the LLM-based agent sys-
tem for enhanced performance in our future work. ❸ Per-
ception tasks are only a small part of our focus. Our main
goal is to apply LLMs for more complex reasoning tasks
(such as prediction, risk assessment, and planning), capa-
bilities not offered by BEV SOTAs.

Table 1. Comparison between our method and SOTA BEV
methods without LLMs. We use BEVFormer [3] as the BEV
SOTA backbone. ∗ indicates tasks requiring reasoning or interac-
tions. ✗ means tasks can not be addressed by BEV SOTAs. All
models are trained under the same setting.

Perception∗ Prediction
Model # Ins ↓ Clos ↑ ↓ ↑ ↓ ↑ Risk ↑ Planning ↑

Ours (MiniGPT-4) 3.8 32.9 13.3 25.4 4.2 46.5 22.0 35.6
BEV SOTA1(Fig. 1 (b)) 3.2 33.7 ✗ ✗ ✗ ✗ ✗ ✗
BEV SOTA2(Fig. 1 (c)) 3.5 33.4 ✗ ✗ ✗ ✗ ✗ ✗

2. More details about NuInstruct
In this section, we give more information about our NuIn-
struct. In Section 2.1, we show the detailed information
of the scene database. Then, we give the definition of Al-
gorithms 1-17 for all task SQLs in Section 2.2. Finally,
the computation for different metrics is presented in Sec-
tion 2.3.

Prediction SQLs
Motion Status

Overtaking Oncoming

Braking

Risk SQLs

Approaching

Lane changing

Crossing

Closest Speeds Status

Instance Numbers

Same road

Distance

Perception SQLs

Plaining with
Reasoning SQLs

Scene Information
Scene_id Frame_id_list

Frame_
id

Ego_id_
list

Instance
_id_list

Ego_information_id Ego_id …

Frame Information

Ego Information

Instance_inform
ation_id

Instanc
e_id

…

Instance Information

(a) Scene Database

(b) Task SQLs

Figure 2. The illustration of (a) Scene Database and (b) Task
SQLs. The red dashed line indicates the mapping relation of dif-
ferent tables. The red blue line indicates the derivation.

2.1. Scene Database

Based on the information of the ego car and impor-
tant instances, we construct a scene database as shown in
Fig. 2 (a). The scene information database includes four
tables:
• Scene Information: consists of the scene dictio-

nary list. The key for each dictionary is the scene
ID, which is the unique identifier of the scene in
NuScenes [1]. The value is a frame ID list, consisting
of IDs of frames in the current scene. The details for each
frame are referred to the Frame Information table.

• Frame Information: consists of the frame dictio-
nary list. The key for each dictionary is the unique ID
for a specific frame. The value contains the details for the
frame, including the ego-car-information ID and instance-
information ID list. The details for the information of
the ego car and instances in the frame are referred to the
Ego Information and Instance Information
tables respectively.

• Ego Information: consists of the ego-car informa-
tion dictionary list. The key for each dictionary is the
unique ID for the information of the ego-car in one spe-
cific frame. The values include the information: e.g.,

Field Scene ID Frame ID List
Type string string list
(a) Scene Information Table Tscene.

Field Frame ID Ego Information ID List Instance Information ID List
Type string token string list string list

(b) Frame Information Table Tframe.

Field Information ID Pose Rotation Velocity Road Information Camera Information

Type string float list float list float dictionary dictionary
(c) Ego Information Table Tego.

Field Information ID Instance ID Category Attribute Global-T Global-R Local-T Local-R Velocity Road Information Camera Pos

Type string string string string float list float list float list float list float dictionary dictionary

(d) Instance Information Table Tins. Global-T = Global Translation, Global-R = Global Rotation, Local-T = Local Translation, Local-R = Local
Rotation

.
Table 2. Detaild Field and Type for different tables in Fig. 2 (a)

.

ego car pose, ego car rotation, velocity, road information,
camera information, and so on.

• Instance Information: consists of the instance
information dictionary list. The key for each dictionary is
the unique ID for the information of one instance in one
specific frame. The values include the information: e.g.,
instance ID (the unique identifier for one instance, e.g., a
car, across different frames in one scene), instance global
and local translations and rotations, velocity, road infor-
mation, etc.

The relations between different tables in the database
are shown in Fig. 2 (b) (red dashed arrows), i.e., Scene
Information and Frame Information, Frame
Information and Ego Information, Frame
Information and Instance Information are
all one-to-many mappings. The detailed fields and their
corresponding types for each table are shown in Table 2.

2.2. Task SQLs

As shown in Fig. 2 (b), we define four types of SQL sets
(i.e., perception, prediction, risk, and planning with rea-
soning), which are used for generating different types of
instruction-response pairs. Each type of task SQL set con-
sists of several subtask SQLs. For example, the perception
SQL set contains six subtask SQLs, e.g., Closest focuses on
finding the objects closest to the ego car, and the other sub-
tasks are similar. Note that some high-level SQLs may be
inherited from low-level ones following the relational flow
of autonomous driving tasks [2], as shown in blue dashed
arrows in Fig. 2 (b). For instance, the prediction SQLs are
based on the perception ones, the risk SQLs are based on
both prediction and perception SQLs, and the planning with
reasoning SQL is inherited from prediction and risk ones.

Each subtask SQL consists of a subtask function and an
instruction prompt. We illustrate the detailed algorithms
for 17 subtask SQLs in Algorithm 1-17. In these algo-

rithms, ‘query(T , *args)’ indicates querying the informa-
tion from the table T with the arguments *args. After
obtaining the results from the task SQLs, we transfer them
into the language descriptions by template or GPT-4 [4].
Regard the planning with reasoning task as the example, af-
ter obtaining the queried results {R, s,m}, where R, s and
m are the risk instance dictionary, the future speed and the
future motion of the ego car. Then, the response is formu-
lated as ‘There are R the ego car. Hence
the ego car should be s and move to m.’

2.3. Evaluation Details

In this section, we show the computation details for dif-
ferent evaluation metrics, i.e., MAE, accuracy, MAP, and
BLEU.
MAE. For tasks measured by MAE, we first use the reg-
ular expression to obtain the values from the predicted re-
sponse, e.g., m̂. Then the MAE is computed by |m̂ − m|,
where | · | indicates the absolute value.
Accuracy. There are three kinds of subtasks measured by
the accuracy, i.e., Closest, Status, and Same Road. Since
the predictions of the Closest subtask are the instance cat-
egories, we formulate the Closest subtask to the classifica-
tion tasks. Similarly, for the Status subtask, there are to-
tally two different statuses (i.e., moving and stationary) for
the ego car, while other instances have different statuses for
different kinds of objects, e.g., for vehicles, there are mov-
ing, stopped and parked; for pedestrians, there are moving,
standing and sitting. Hence, the Status subtask can also be
regarded as the classification task. Finally, the responses
to the Same Road task are ‘yes’ or ‘no’, which is a binary
classification task.
MAP. We evaluate all subtasks in the risk task by the mean
average precision (MAP). Since risk tasks aim to find the
objects that may have a risk influence on the ego car driving.
Hence, we can transfer them to the object detection tasks,
which are generally evaluated by MAP.

Algorithm 1 Distance SQL
1: Input: Instance information ID: i
2: Instruction prompt p: What is the distance between ins and

the ego car?.
3: Ii = query(Tins, i)
4: ins = < cn, x1, y1, x2, y2 > = Ii[‘Camera Pos’]
5: (x, y) = Ii[‘Local-T’]
6: l =

√
x2 + y2

7: return l

Algorithm 2 Closest SQL
1: Input: Frame ID i
2: Instruction prompt p: What are the closest objects in view

of the ego car?;
3: view = {front left, front, front right, back left, back, back

right, all }.
4: Fi = query(Tframe, i)
5: dmin = inf; Imin = dict()
6: for v in view do
7: for n in Fi[‘Instance Information ID List’] do
8: In = query(Tins, n)
9: if v in In[‘Camera Pos’] or v == all then

10: (x, y) = In[‘Local-T’]
11: d =

√
x2 + y2

12: if dmin < d then
13: Imin[v] = In
14: end if
15: end if
16: end for
17: end for
18: return Imin

BLEU. BLEU [5] is a classical evaluation metric for cap-
tion tasks. In this paper, we use BLEU [5] to evaluate the
planning with reasoning task, which is similar to caption-
ing.

3. More Qualitative Examples
We show more visualization examples for all 17 subtasks in
Fig. 3 (perception tasks), Fig. 4 (Prediction tasks), Fig. 5-7
(risk tasks) and Fig. 8 (planning with reasoning tasks).

References
[1] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,

Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recog-
nition, pages 11621–11631, 2020. 1

[2] Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima,
Xizhou Zhu, Siqi Chai, Senyao Du, Tianwei Lin, Wenhai
Wang, et al. Planning-oriented autonomous driving. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 17853–17862, 2023. 2

Algorithm 3 Instance Number SQL
1: Input: Frame ID i
2: Instruction prompt p: How many object in view of the

ego car?;
3: object = {car, truck, pedestrian, barrier, debris, bicycle,

bus, construction, ambulance... }
4: view = {front left, front, front right, back left, back, back

right, all }.
5: Fi = query(Tframe, i)
6: N = dict()
7: for o in object do
8: for v in view do
9: N [v][o] = 0

10: for n in Fi[‘Instance Information ID List’] do
11: In = query(Tins, n)
12: if o == In[‘Category’] then
13: if v in In[‘Camera Pos’] or v == all then
14: (x, y) = In[‘Local-T’]
15: d =

√
x2 + y2

16: N [v][o] + +
17: end if
18: end if
19: end for
20: end for
21: end for
22: return N

Algorithm 4 Speeds SQL
1: Input: Instance information ID: i
2: Instruction prompt p: What is the speeds for ins?
3: Ii = query(Tins, i)
4: ins = < cn, x1, y1, x2, y2 > = Ii[‘Camera Pos’]
5: v = Ii[‘Velocity’]
6: return v

Algorithm 5 Status SQL
1: Input: Instance information ID: i
2: Instruction prompt p: What is the status for ins?
3: Ii = query(Tins, i)
4: ins = < cn, x1, y1, x2, y2 > = Ii[‘Camera Pos’]
5: s = Ii[‘Attribute’]
6: return s

[3] Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chonghao
Sima, Tong Lu, Yu Qiao, and Jifeng Dai. Bevformer: Learn-
ing bird’s-eye-view representation from multi-camera images
via spatiotemporal transformers. In European conference on
computer vision, pages 1–18. Springer, 2022. 1

[4] OpenAI OpenAI. Gpt-4 technical report. 2023. 2
[5] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing

Zhu. Bleu: a method for automatic evaluation of machine
translation. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, pages 311–318,
2002. 3

Speeds
Instruction: What is the speeds for <car>[c1, 0.48, 0.51, 0.62, 0.75]?
Response: 0.00

Status
Instruction: What is the status for <car>[c4, 0.52, 0.62, 0.58, 0.92] ?
Response: stopped but has an intent to move.

Same Road
Instruction: Does <car>[c0, 0.42, 0.85, 0.63, 1.00] in the same road
with the ego car?
Response: no(a) Input: Multiview Videos

(b) Output: Perception Tasks

Instruction: What is distance between <car>[c1, 0.48, 0.51, 0.62, 0.75]
and the ego car?
Response: 7.65

Distance

Instance Number
Instruction: How many cars in the back left of the ego car?
Response: 3Instruction: What is the closest object to the ego car? Please use

the format as <O><cn, x1, y1, x2, y2> where O is the object
category, cn is the n-th camera and x1, y1, x2, y2 are the
coordinates of the top-left and bottom-right corners of the
bounding box.
Response: <car>[c4, 0.52, 0.62, 0.58, 0.92]

Closest

Figure 3. Visualization of our proposed BEV-InMLLM on the perception tasks, which includes six subtasks, i.e., speeds, status, same road,
instance number, distance and closest.

Frame 1 Frame N

Motion Ego
Instruction: What is the next motion for the ego car?
Please use the format as (x,y) where x-axis is
perpendicular, and y-axis is parallel to the direction you're
facing.
Response: [0.00, 0.00]

Motion Others
Instruction: What is the next motion for <car>[c0, 0.42,
0.85, 0.63, 1.00]? Please use the format as (x,y) where x-
axis is perpendicular, and y-axis is parallel to the direction
the instance facing.
Response: [5.12, 0.52]

Status Others
Instruction: What is the next status for <pedestrian>[c1,
0.52, 0.25, 0.69, 0.31] ?
Response: go straightforward and keep speed

Status Ego
Instruction: What is the next status for the ego car?
Response: stay stationary

(a) Input: Multiview Videos

(b) Output: Prediction Tasks

Front RightFrontFront Left

Back RightBackBack Left

Front RightFrontFront Left

Back RightBackBack Left

Figure 4. Visualization of our proposed BEV-InMLLM on the prediction tasks, which includes four subtasks, i.e., motion ego, motion
others, status ego and status others.

Frame 1 Frame N(a) Input: Multiview Videos

(b) Output: Risk Tasks

On Coming
Instruction: Do any objects go on coming to the ego car?
If any, please list all objects as format
<class>[cn,x1,y1,x2,y2], class is the class label, cn indicates
the n-th camre, are the coordinates of the top-left and
bottom-right corners of the bounding box.
Response: <car>[c0, 0.42, 0.85, 0.63, 1.00]

Crossing
Instruction: Do any objects cross the head of the ego car?
If any, please list all objects as format
<class>[cn,x1,y1,x2,y2], class is the class label, cn indicates
the n-th camre, are the coordinates of the top-left and
bottom-right corners of the bounding box.
Response: <pedestrian>[c1, 0.52, 0.25, 0.69, 0.31]

Braking
Instruction: Do any objects brake ahead of the ego car? If any, please list all objects as format <class>[cn,x1,y1,x2,y2],
class is the class label, cn indicates the n-th camre, are the coordinates of the top-left and bottom-right corners of the
bounding box.
Response: <car>[c1, 0.48, 0.51, 0.62, 0.75]

Front RightFrontFront Left

Back RightBackBack Left

Front RightFrontFront Left

Back RightBackBack Left

Figure 5. Visualization of our proposed BEV-InMLLM on risk tasks, which includes three subtasks, i.e., on coming, crossing and braking.

Frame 1 Frame N(a) Input: Multiview Videos

(b) Output: Risk Tasks

Lane Changing
Instruction: Do any objects change to the same lane of the ego car? If any, please list all objects as format
<class>[cn,x1,y1,x2,y2], class is the class label, cn indicates the n-th camre, are the coordinates of the top-left and
bottom-right corners of the bounding box.
Response: <truck>[c1, 0.35, 0.40, 0.67, 0.53]

Front RightFrontFront Left

Back RightBackBack Left

Front RightFrontFront Left

Back RightBackBack Left

Figure 6. Visualization of our proposed BEV-InMLLM on risk tasks, which includes one subtask, i.e., lane changing.

Frame 1 Frame N(a) Input: Multiview Videos

(b) Output: Risk Tasks

Approaching
Instruction: Do any objects change to the same lane of the ego car? If any, please list all objects as format
<class>[cn,x1,y1,x2,y2], class is the class label, cn indicates the n-th camre, are the coordinates of the top-left and
bottom-right corners of the bounding box.
Response: <car>[c4, 0.42, 0.64, 0.62, 0.88]

Overtaking
Instruction: Do any objects change to the same lane of the ego car? If any, please list all objects as format
<class>[cn,x1,y1,x2,y2], class is the class label, cn indicates the n-th camre, are the coordinates of the top-left and
bottom-right corners of the bounding box.
Response: <car>[c2, 0.00, 0.64, 0.93, 1.00]

Front RightFrontFront Left

Back RightBackBack Left

Front RightFrontFront Left

Back RightBackBack Left

Figure 7. Visualization of our proposed BEV-InMLLM on risk tasks, which includes two subtasks, i.e., approaching and overtaking.

Frame 1 Frame NInput: Multiview Videos

Output: Planning with Reasoning Tasks

Instruction: Please give the next plain for the ego with the reasons.

Response: There are <pedestrian>[c1, 0.52, 0.25, 0.69, 0.31] go cross the head of the ego car, <car>[c0, 0.42, 0.85, 0.63, 1.00] go on
coming to the ego car, and <car>[c1, 0.48, 0.51, 0.62, 0.75] braking ahead of the ego car, hence the ego car should stay still
for them to leave.

Frame 1 Frame NInput: Multiview Videos

Output: Planning with Reasoning Tasks

Instruction: Please give the next plain for the ego with the reasons.

Response: There are <truck>[c1, 0.35, 0.40, 0.67, 0.53] change the lane at head of the ego car, how the ego car keeps a safe
distance from it, hence the ego car can keep speed and go stragihtforward.

Front RightFrontFront Left

Back RightBackBack Left

Front RightFrontFront Left

Back RightBackBack Left

Front RightFrontFront Left

Back RightBackBack Left

Front RightFrontFront Left

Back RightBackBack Left

Figure 8. Visualization of our proposed BEV-InMLLM on the planning with reasoning tasks.

Algorithm 6 SameRoad SQL
1: Input: Instance information ID: i; Frame ID: n
2: Instruction prompt p: Does ins in the same road with the

ego car?
3: Ii = query(Tins, i)
4: En = query(Tego, n)
5: ins = < cn, x1, y1, x2, y2 > = Ii[‘Camera Pos’]
6: rins = Ii[‘Road Information’]
7: rego = En[‘Road Information’]
8: if rins ==rego then
9: return yes

10: else
11: return no
12: end if

Algorithm 7 Motion Ego SQL
1: Input: Current Frame ID: i; Next Frame ID: i+ 1
2: Instruction prompt p: What is the next motion for the ego

car?
3: Ei = query(Tego, i); pi = Ei[‘Pose’]; ri = Ei[‘Rotation’]
4: Ei+1 = query(Tego, i + 1); pi+1 = Ei+1[‘Pose’]; ri+1 =

Ei+1[‘Rotation’]
5: m = r−1

i .rotate(pi+1 - pi)
6: return m

Algorithm 8 Motion Others SQL
1: Input: Current Frame ID: i; Next Frame ID: i+ 1
2: Instruction prompt p: What is the next motion for ins?
3: Fi = query(Tframe, i);
4: M = dict() ## Motion dictionary for instances
5: for n in Fi[‘Instance Information ID List’] do
6: In = query(Tins, n)
7: ins = < cn, x1, y1, x2, y2 > = In[‘Camera Pos’]
8: pn = In[‘Global-T’]; rn = In[‘Global-R’]
9: d =

10: d = Query(Tins, In[‘Instance ID’], i+ 1)
11: Id = query(Tins, d)
12: pd = Id[‘Global-T’]; rd = Id[‘Global-R’]
13: M [n] = r−1

n .rotate(pd - pn)
14: end for
15: return M

Algorithm 9 Status Ego SQL
1: Input: Current Frame ID: i; Next Frame ID: i+ 1
2: Instruction prompt: What’s the next status for the ego car?
3: m = Motion Ego (i, i+ 1) ## Algorithm 7
4: Ei = query(Tego, i); vi = Ei[‘Velocity’]
5: Ei+1 = query(Tego, i+ 1); vi+1 = Ei+1[‘Velocity’]
6: return {vi+1 − vi,m}

Algorithm 10 Status Others SQL
1: Input: Current Frame ID: i; Next Frame ID: i+ 1;
2: Instruction prompt: What’s the next status for ins?
3: Fi = query(Tframe, i);
4: M = Motion Others(i,i+ 1) ## Algorithm 8
5: V = dict() ## Speeds dictionary for instances
6: for n in Fi[‘Instance Information ID List’] do
7: In = query(Tins, n)
8: d = In[‘Instance ID’]
9: vi = Speeds(n); vi+1 = Speeds(d) ## Algorithm 4

10: V [n] = vi+1 − vi
11: end for
12: return {V,M}

Algorithm 11 Overtaking SQL
1: Input: Previous Frame ID: i − 1; Current Frame ID: i; Next

Frame ID: i+ 1; Threshold distance to the ego car: dis
2: Instruction prompt: Do any objects overtake the ego car?
3: Fi = query(Tframe, i);
4: Mi−1 = Motion Others(i, i− 1) ## Algorithm 8
5: Mi = Motion Others(i, i+ 1) ## Algorithm 8
6: O = list() ## Instance list
7: for n in Fi[‘Instance Information ID List’] do
8: In = query(Tins, n)
9: d = Query(Tins, In[‘Instance ID’], i− 1)

10: vi = Speeds(n); vi−1 = Speeds(d) ## Algorithm 4
11: if Mi−1[d][0] < 0 and Mi−1[d][0] > 0 and Mi−1[d][1] <

dis and Mi−1[d][1] < dis and vi > 0 and vi−1 > 0 then
12: O.append(In)
13: end if
14: end for
15: return O

Algorithm 12 On Coming SQL
1: Input: Previous Frame ID: i − 1; Current Frame ID: i; Next

Frame ID: i+ 1; Threshold distance to the ego car: dis
2: Instruction prompt: Do any objects go on coming to the ego

car?
3: Fi = query(Tframe, i);
4: Mi−1 = Motion Others(i, i− 1) ## Algorithm 8
5: Mi = Motion Others(i, i+ 1) ## Algorithm 8
6: O = list() ## Instance list
7: for n in Fi[‘Instance Information ID List’] do
8: In = query(Tins, n)
9: d = Query(Tins, In[‘Instance ID’], i− 1)

10: vi = Speeds(n); vi−1 = Speeds(d) ## Algorithm 4
11: if Mi−1[d][0] > 0 and Mi−1[d][0] > 0 and Mi[d][0] <

Mi−1[d][0] and Mi−1[d][1] < dis and Mi[d][1] < dis
and abs(Mi[d][1] − Mi−1[d][1]) < dis)and vi > 0 and
vi−1 > 0 then

12: O.append(In)
13: end if
14: end for
15: return O

Algorithm 13 Approaching SQL
1: Input: Previous Frame ID: i − 1; Current Frame ID: i; Next

Frame ID: i+ 1; Threshold distance to the ego car: dis
2: Instruction prompt: Do any objects approach the ego car?
3: Fi = query(Tframe, i);
4: Mi−1 = Motion Others(i, i− 1) ## Algorithm 8
5: Mi = Motion Others(i, i+ 1) ## Algorithm 8
6: O = list() ## Instance list
7: for n in Fi[‘Instance Information ID List’] do
8: In = query(Tins, n)
9: d = Query(Tins, In[‘Instance ID’], i− 1)

10: vi = Speeds(n); vi−1 = Speeds(d) ## Algorithm 4
11: if Mi[d][0] < Mi−1[d][0] and Mi−1[d][1] < dis and

Mi[d][1] < dis and abs(Mi[d][1] − Mi−1[d][1]) <
dis)and vi > 0 and vi−1 > 0 then

12: O.append(In)
13: end if
14: end for
15: return O

Algorithm 14 Crossing SQL
1: Input: Previous Frame ID: i − 1; Current Frame ID: i; Next

Frame ID: i + 1; Threshold distance to the ego car: dis;
Threshold distance for x direction: disx; Threshold distance
for y direction: disy

2: Instruction prompt: Do any objects cross the head of the ego
car?

3: Fi = query(Tframe, i);
4: Mi−1 = Motion Others(i, i− 1) ## Algorithm 8
5: Mi = Motion Others(i, i+ 1) ## Algorithm 8
6: O = list() ## Instance list
7: for n in Fi[‘Instance Information ID List’] do
8: In = query(Tins, n)
9: d = Query(Tins, In[‘Instance ID’], i− 1)

10: li = Distance(n); li−1 = Distance(d) ## Algorithm 1
11: vi = Speeds(n); vi−1 = Speeds(d) ## Algorithm 4
12: if li < dis and li−1 < dis and abs(Mi[d][0] −

Mi−1[d][0]) < disx) and abs(Mi[d][1] −Mi−1[d][1]) >
disy) and vi > 0 and vi−1 > 0 then

13: O.append(In)
14: end if
15: end for
16: return O

Algorithm 15 Braking SQL
1: Input: Previous Frame ID: i − 1; Current Frame ID: i; Next

Frame ID: i + 1; Threshold distance to the ego car: dis;
Threshold distance for x direction: disx; Threshold distance
for y direction: disy; Threshold speed: s

2: Instruction prompt: Do any objects brake ahead of the ego
car?

3: Fi = query(Tframe, i);
4: Mi−1 = Motion Others(i, i− 1) ## Algorithm 8
5: Mi = Motion Others(i, i+ 1) ## Algorithm 8
6: O = list() ## Instance list
7: for n in Fi[‘Instance Information ID List’] do
8: In = query(Tins, n)
9: d = Query(Tins, In[‘Instance ID’], i− 1)

10: li = Distance(n); li−1 = Distance(d) ## Algorithm 1
11: vi = Speeds(n); vi−1 = Speeds(d) ## Algorithm 4
12: if li < li−1 < dis and abs(Mi[d][0] − Mi−1[d][0]) >

disx) and Mi[d][1] < disy and Mi−1[d][1]) < disy) and
vi−1 > s and vi < s then

13: O.append(In)
14: end if
15: end for
16: return O

Algorithm 16 Lane Chaning SQL
1: Input: Previous Frame ID: i − 1; Current Frame ID: i; Next

Frame ID: i + 1; Threshold distance to the ego car: dis;
Threshold speed: s

2: Instruction prompt: Do any objects change to the same lane
of the ego car?

3: Fi = query(Tframe, i);
4: Mi−1 = Motion Others(i, i− 1) ## Algorithm 8
5: Mi = Motion Others(i, i+ 1) ## Algorithm 8
6: O = list() ## Instance list
7: for n in Fi[‘Instance Information ID List’] do
8: In = query(Tins, n)
9: d = Query(Tins, In[‘Instance ID’], i− 1)

10: li = Distance(n); li−1 = Distance(d) ## Algorithm 1
11: vi = Speeds(n); vi−1 = Speeds(d) ## Algorithm 4
12: ri = SameRoad(n); ri−1 = SameRoad(d) ## Algorithm 6
13: if li < li−1 < dis and ri==yes and ri−1==no and vi−1 >

s and vi > s then
14: O.append(In)
15: end if
16: end for
17: return O

Algorithm 17 Planning with Reasoning SQL
1: Input: Previous Frame ID: i − 1; Current Frame ID: i; Next

Frame ID: i + 1; Risk dictionary: risks = { ‘Overking’,
‘On Coming’, ‘Approaching’, ‘Crossing’, ‘Braking’, ‘Lane
Changing’ }

2: Instruction prompt: Please give the next plan for the ego car
with reasons.

3: R = dict() ## Risk instance dictionary
4: m = Motion Ego(i, i+ 1) ## Algorithm 7
5: s = Status Ego(i, i+ 1) ## Algorithm 9
6: for risk in risks do
7: R[risk] = risk(i− 1, i, i+ 1) ## Algorithm 11-16
8: end for
9: return {R,S,M}

	. comparison between ours and existing BEV SOTAs without LLMs
	. More details about NuInstruct
	. Scene Database
	. Task SQLs
	. Evaluation Details

	. More Qualitative Examples

