
Reg-PTQ: Regression-specialized Post-training Quantization for Fully
Quantized Object Detector

Supplementary Material

To further demonstrate the design and effectiveness of
our Reg-PTQ framework, we first supplement the advan-
tage of using toy experiments for observation. Then, we re-
port more evaluation results in the supplementary material,
including additional experimental results on more datasets
and architectures, hardware implementation performance
and more visualizations.

Lo
ss

 o
f C

la
ss

ifi
er

Loss of R
egressor

(a) Losses under perturbation
𝜎

0.004

0.003

0.002

0.001

0.000

3.55
3.50
3.45
3.40
3.35
3.30
3.25
3.20

-0.2 0.0 0.2

e−7

(b) Performance with different scales

Q
ua

nt
iz

at
io

n
E

rr
or A

ccuracy of
 R

etinaN
et-R

18

scaling candidates

2.5

2.0

1.5

1.0

0.5

0.0

e−4

0.01715
0.01710
0.01705
0.01700
0.01695
0.01690
0.01685

60 70 80 90 100

Best performance

minimal error

(c) Weights in Res50 convs (d) Weights in RetinaNet-R18 convs
−0.05 0.00 0.05

#Params

−0.05 0.00 0.05

#Params

Figure S1. Observation#1-3 from real models.

G. Advantage of Toy Experiments
We choose toy models for observation mainly with three
reasons.

First, toy models can reach the same conclusion with
the real one. We had conducted experiments on real Reti-
naNet (with ResNet18) for regressor and ResNet50 for
classifier to validate it, which have the similar parameter
amounts. Specifically, for Observation#1, we visualize the
loss of RetinaNet and Res50 perturbed by the uniform noise
in Fig. S1(a). classifier is more robust to quantization noise.
This is because small perturbations on output probability
may have little impact on the final results. But regressors’
output is in the continuous space, and any perturbations will
be reflected in the final loss. This difference exist both in
toy and real models. For Observation#2, it is well recog-
nized that minimizing the local quantization error may not
get the optimal scaling factors [22, 62]. We also verified it
on RetinaNet-R18 in Fig. S1(b). For Observation#3, due
to the training techniques, such as weight decay, real classi-
fiers are tend to have normal distributions as well []. But we
have proven in Theoretical Analysis 3.2 that distance-based
regression loss has stronger regularization to the weights,

making the more non-uniform distributions of regression
weights. Fig. S1(c-d) visualize the weights distributions of
classifier and regressor head which showcase the impact of
the loss regularization.

Second, toy models can better control the unrelated
factors and helps to focus the analysis on the fundamen-
tal difference between classifier and regressor, i.e., the ob-
jective of both tasks, because real models use sophisticated
training techniques to ensure convergence, and introduces
confounding variables.

Third, toy models enable precise calculation of inter-
mediate results because of the significantly fewer parame-
ters, such as precise Hessian matrix in Fig. 6(b). The 4-layer
toy model, which has only <1k parameters in each layer,
makes it practical to calculate the Hessian matrix precisely.
Therefore, toy models can help probe and reveal the latent
properties.

H. Derivation for Theoretical Analysis (Non-
uniform Distribution Case)

In Theoretical Analysis 3.2, we take the uniform distribu-
tion to derive the posterior probability of W to simplify the
derivation, but it also applicable if P (W) is non-uniform,
e.g., normal distribution. We provide the derivation in the
following to prove that if the weight obeys normal distri-
bution as priori, the training procedure with Lp loss also
results in a quasi normal distribution of weight.

Assume that the priori of weight distribution obeys the
normal distribution P (W) ∼ N(0,Σ), which can be writ-
ten as P (W) = 1√

2πΣ
exp

(
− 1

2W
⊤Σ−1W

)
. Then the pos-

terior probability of W is

P (W |X,Y) =
1

√
2πΣλ1

exp

(
−
||f(X)− Y ||p

λ2
−

W⊤W

2Σ

)
(S11)

∝ exp

(
−
(Y − (X⊤W + b))⊤Σ(Y − (X⊤W + b)) +W⊤λ2W

2λ2Σ

)
(S12)

(if p = 2) (S13)

∝ exp

−
(W − µ)⊤

(
λ−1
2 XX⊤ +Σ−1

)
(W − µ)

2

 ,

(S14)

where µ = 1
λ2

1
λ−1
2 XX⊤+Σ−1

XY . Simplify Eq. S14 then
we have

P (W |X,Y) ∝ N(µ,
1

λ−1
2 XX⊤ +Σ−1

). (S15)

Method #Bit(W/A)
RetinaNet YOLOF Faster RCNN

ResNet-50 ResNet-101 ResNet-50 ResNet-50 ResNet-101
Full-precision 32/32 37.4 38.9 37.5 38.5 39.8

baseline (FP Head) 2/4 27.0 29.0 25.7 28.1 30.0
Reg-PTQ (Ours) 2/4 23.9 24.8 19.3 19.1 21.5

baseline (FP Head) 3/3 30.0 30.8 28.2 31.7 31.1
Reg-PTQ (Ours) 3/3 28.1 28.3 27.3 28.1 29.1

baseline (FP Head) 4/4 35.2 36.5 34.4 37.7 38.0
Reg-PTQ (Ours) 4/4 36.7 35.9 34.3 36.7 36.2

baseline (FP Head) 4/8 37.4 38.9 37.1 38.3 39.5
Reg-PTQ (Ours) 4/8 37.4 38.6 36.8 37.8 39.1

Table S1. Comparison with other PTQ methods on various detectors with ResNet-50/101 as the backbone on COCO dataset.

It means that if the weight priori is the normal distribution
symmetric to zero, which is a common conception of W ,
the prosterior probability is also likely to gather around the
center. Therefore, it is straightforward to think that the Lp-
like losses imposes a regularization on the weight to push
them to the center.

I. More Experimental Results

To evaluate the performance of our Reg-PTQ framework
when calibrating various object detection models, we per-
form extra experiments on more datasets and architectures,
and compare with various existing PTQ methods.

I.1. Comparison to Only Quantizing Backbone

Accuracy of only quantizing the backbone and neck can
be found in previous works [21, 38, 53] for corresponding
methods. Therefore, due to the limited space, we do not put
the results of only quantizing backbone in main text. We
report the accuracy comparison of whether quantize head in
Table S1. It shows that additionally quantizing head brings
little accuracy drop.

I.2. Results on PASCAL VOC Dataset

Implementation detail. We further validate our method
and compare it with other works on PASCAL VOC
dataset [9], which is also a widely evaluated object detection
dataset. We select RetinaNet [28] and Faster RCNN [44]
with ResNet-50 backbone as representatives of one and
two-stage detectors, respectively.

Results. As Table S2 shows, our Reg-PTQ has consis-
tent performance improvement on PASCAL VOC dataset.
It surpasses existing PTQ methods by wide margins, es-
pecially under lower bit-width. For example, when quan-
tizing to W2A4 bit-width, Reg-PTQ outperforms existing
SOTA methods by 5.4% with RetinaNet and 2% with Faster
RCNN. The performance of the fully quantized detectors on
W4A4 and W4A8 are comparable with the full-precision
counterparts, which show the promising application poten-
tial of fully quantized detectors in the real-world.

Method #Bit(W/A)
Faster RCNN RetinaNet

ResNet-50 ResNet-50
Full-precision 32/32 80.4 77.3
AdaQuant [35] 2/4 0 0.6
BRECQ [35] 2/4 54.0 39.3

PD-Quant [30] 2/4 20.9 51.8
SubSetQ [40] 2/4 41.1 35.0
QDrop [56] 2/4 57.2 49.5

Reg-PTQ (Ours) 2/4 59.2 57.2
AdaQuant 3/3 29.4 57.8
BRECQ 3/3 59.5 66.8

PD-Quant 3/3 22.7 67.1
SubSetQ 3/3 66.1 63.2
QDrop 3/3 70.1 69.2

Reg-PTQ (Ours) 3/3 72.3 70.9
AdaRound 4/4 2.0 1.9
AdaQuant 4/4 50.5 74.8
BRECQ 4/4 73.5 75.2

PD-Quant 4/4 59.7 74.2
SubSetQ 4/4 76.8 74.6
QDrop 4/4 77.6 75.5

Reg-PTQ (Ours) 4/4 78.3 76.0
AdaQuant 4/8 54.2 76.5
BRECQ 4/8 57.5 77.1

PD-Quant 4/8 63.8 76.7
SubSetQ 4/8 79.2 77.1
QDrop 4/8 79.5 77.2

Reg-PTQ (Ours) 4/8 79.6 77.2

Table S2. Comparison with other PTQ methods on various detec-
tors with ResNet-50 as the backbone on PASCAL VOC dataset.

Method #Bit(W/A)
DETR

ResNet-50
Full-precision 32/32 39.9
QDrop [56] 2/4 12.2

Reg-PTQ (Ours) 2/4 18.3
QDrop [56] 3/3 19.1

Reg-PTQ (Ours) 3/3 29.4
QDrop 4/4 29.5

Reg-PTQ (Ours) 4/4 37.4

Table S3. Evaluation on transformer-based architectures on
COCO dataset.

I.3. Results on Transformer-based Architectures

Implementation detail. Besides CNN-based detectors, we
also conduct full quantization on transformer-based archi-

Method #Bit(W/A)
RetinaNet YOLOF Faster RCNN Mask RCNN

ResNet-50 ResNet-101 ResNet-50 ResNet-50 ResNet-101 ResNet-50 ResNet-101
Full-precision 32/32 37.4 38.9 37.5 38.5 39.8 39.2 40.8

AdaQuant 2/4 0 0 0 0 0 0 0
AdaRound 2/4 2.6 6.8 1.4 14 15 14.3 16.3
SubSetQ 2/4 6.9 6.1 7.1 6.9 7.9 8.4 8.7

Reg-PTQ (Ours) 2/4 23.9 24.8 19.3 19.1 21.5 19.1 20.7
SubSetQ 3/3 23.6 24.7 20.7 23.2 18.2 24.1 25.3

Reg-PTQ (Ours) 3/3 28.1 28.3 27.3 28.1 29.1 28.4 28.8
AdaRound 4/8 20.1 21.2 14.1 22.1 23.8 22.9 24.3

Reg-PTQ (Ours) 4/8 37.4 38.6 36.8 37.8 39.1 38.3 40.0

Table S4. More results compared with existing PTQ methods on COCO dataset.

DataType Latency(ms) Storage(MB)
Float32 796.4 129.7
INT16 438.4 68.6
INT4∗ 132.8 38.6
INT4 84.5 22.8

Table S5. Efficiency and storage reduction on single NVIDIA
Tesla T4 implemented with TVM. DataType denotes the weights
and activation datatype. INT4∗ means we only quantize backbone
and FPN neck to 4-bit but leave the heads full-precision. Other
results without ∗ means full quantization with uniform bitwidth.

tecture on COCO object detection dataset [25]. Representa-
tively, we select DETR [5] with transformer-based encoder
and decoder as heads and ResNet-50 as the backbone.

Results. Table S3 shows the results of our Reg-PTQ ap-
proach, which demonstrates that full quantization is also
feasible on transformer-based architectures. The W4A4
quantized DETR using our Reg-PTQ achieves comparable
performance to its full-precision counterpart, which has a
slight 2.5% performance drop. It has a noticeable 7.9%
advancement compared to the state-of-the-art baseline ap-
proach QDrop [56]. Meanwhile, the improvement under
lower bit-width is more impressive, which is 10.3% under
W3A3 and 6.1% under W2A4 compared with the baseline
method QDrop. It shows that our method is capable of
transformer-based detection architectures and accomplishes
promising performance.

I.4. More Results on COCO Dataset

Due to the limited length, we leave out some comparison
results on COCO detection dataset [25] in our main text, in-
cluding AdaRound [35], AdaQuant [19] and SubSetQ [40],
which crashes under ultra-low bit-width. We report the
rest of the results in Table S4, and the results of our Reg-
PTQ are bolded. As shown in the table, our Reg-PTQ out-
performs other baseline approaches, which further demon-
strates the effectiveness of our method.

J. Practical Speedup and Storage Saving

We also conduct hardware deployment to demonstrate the
practical value of full quantization. We give a comparison
of the acceleration and storage saving between fully quan-
tized model, model with backbone and neck quantized only,
and full-precision model.

Implementation detail. We implement detection mod-
els on 1 NVIDIA Tesla T4 GPU by TVM deployment
framework 3. We follow HAWQ [61] to implement INT4
operators, which realizes the bit-packing and data allocation
layouts. We choose RetinaNet as an example for demon-
stration. The backbone is a standard ResNet-50 with four
stages, and the neck is FPN [26]. The classification and re-
gression heads have five layers each, and we leave the last
layer unquantized. For speedup testing, we use one image
with 512×512 pixels as the input and calculate the averaged
inference time of 10 running. For storage compression test-
ing, we pack eight INT4 tensors to INT32 according to the
data allocation layouts of HAWQ. It should be noted that we
implement uniform quantization to all layers to simplify the
project. Previous works [15, 42, 49] have implemented the
logarithmic-like quantizers on FPGAs. Fortunately, com-
pared with them, there is no additional operations in Reg-
PTQ. We will investigate the deployment of Reg-PTQ in
future work.

Results. Table S5 shows the inference time and stor-
age of RetinaNet with ResNet-50 under different bit-width
settings. The Latency of processing a 512×512 image is
796.4ms using the full-precision model on the Tesla T4.
And that for the fully quantized INT16 model is 438.4ms,
which achieves nearly 2× acceleration. Moreover, the in-
ference time of the INT4 fully quantized detector is 84.5ms,
which achieves an impressive 9.4× speedup compared with
its full-precision counterpart.

As for the Storage, the fully quantized INT4 model
is 22.8MB, while the one only quantizing backbone and
FPN neck is 38.6MB. In this case, we additionally achieve
15.8MB storage saving brought by quantizing detection
heads, which can further compress the INT4∗ model by

3https://github.com/apache/tvm

FP QDrop Ours

Figure S2. Visualization of detection results by full-precision (FP)
detectors and 3-bit quantized models.

40.9%. Compared with the full precision model, we achieve
5.7× compression for INT4 fully quantized one. This ac-
celeration and compression are roughly consistent with the
theoretical ratios calculated in our main text. The small dif-
ference between the theoretical ratios and practical ones is
caused by many factors, such as the hardware condition or
operator optimization, etc.

In a word, the remarkable acceleration and storage re-
duction on hardware show the potential of fully quantized
detectors on real-world edge devices. Compared with the
model only quantizing backbone and head, fully quantized
one can achieve more speedup and storage saving.

J.1. Visualization

We visualize the detection results of our Reg-PTQ on
W3A3 in Figure S2 compared with other PTQ methods.
Our Reg-PTQ predicts the bounding boxes more accurately,
with fewer objects missed and higher classification confi-
dence compared to QDrop, which indicates the great po-
tential of applying fully quantized detectors in real-world
scenarios.

	. Introduction
	. Related Works
	. Object Detection
	. Post-Training Quantization

	. Motivation
	. Empirical Observation
	. Theoretical Analysis

	. Method
	. Overall Framework
	. Filtered Global Loss Integration Calibration
	. Learnable Logarithmic Affine Quantizer

	. Experiments
	. Settings
	. Results on COCO Object Detection Dataset
	. Ablation Study
	. Efficiency

	. Conclusion
	. Advantage of Toy Experiments
	. Derivation for Theoretical Analysis (Non-uniform Distribution Case)
	. More Experimental Results
	. Comparison to Only Quantizing Backbone
	. Results on PASCAL VOC Dataset
	. Results on Transformer-based Architectures
	. More Results on COCO Dataset

	. Practical Speedup and Storage Saving
	. Visualization

