Restoration by Generation with Constrained Priors
Supplementary Material

A. Additional Results on Blind Face Restora-
tion

A.l. Standard Benchmark

We provide additional qualitative comparisons on Wider-
Test dataset in Figure 3 and the Deblur-Test dataset in Fig-
ure 4. Wider-Test contains 970 images selected from the
Wider-Face[9] dataset which is initially collected for face
detection that contains many real-world low-quality face im-
ages. The Deblur-Test dataset contains 67 real-world motion-
blur images from [4]. Both of the datasets are aligned using
the same way in FFHQ[3]. All the previous methods we
compare are synthetic-data-based methods. As our method
does not utilize synthetic data which previous methods rely
on, our method shows good generalizability in handling
different kinds of real-world degraded images.

A.2. More Distortion Types

We further provide results on more distortion types e.g.,
JPEG compression and scratches in Figure 1. This further
demonstrates that our method is able to perform better on out-
of-distribution input low-quality images as we don’t utilize
synthetic data for training.
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Figure 1. Results on JPEG compression(top) and scratches(bottom).

B. Additional Results on Personalized Blind
Face Restoration

In this section, we present more personalized restoration
results involving additional subjects. This includes Sub-
ject B (a man), as well as public figures such as Biden and
Hermione. These results are showcased in Figure 5. We com-
pare our method with previous methods CodeFormer[10]
and DR2(+VQFR) [8] which are two single-image-based

restoration methods that rely on synthetic data as well as
ASFFNet[5] that requires a reference dataset. We use the
same personal album in ASFFNet and our method. Our find-
ings demonstrate a superior preservation of identity, along
with a high level of quality in the results.

C. Anchor Images and Constrained Generative
Space

In this section, we discuss both the generative album and
the personalized album utilized by the model to restrict the
generative space for restoration. Additionally, we visual-
ize this constrained space through unconditional generation
from the fine-tuned model.

For the generative album, we employ the input low-
quality image with skip guidance to produce anchor images.
These images are then used to fine-tune the model. We dis-
play the generated album, along with randomly generated
images from the fine-tuned model, in Figure 6. The gen-
erated album contains images similar to the input but with
enhanced quality, though not as high as those produced by
the pre-trained model. This is likely due to the influence of
skip guidance. Nevertheless, the model fine-tuned with this
album is capable of generating high-quality images that still
bear resemblance to the original input.

Regarding the personalized album, we collect around 20
real high-quality images to act as anchor images. Examples
of these images, along with images randomly generated
by the personalized model, are presented in Figure 7. The
images produced by the personalized model exhibit both
diversity and identity preservation, attributes learned from
the personal album.

D. More Ablation Studies

Noise Step K and Constraining Prior with Generative
Album. Here we provide supplemental results to Figure 8
from the main paper, which analyzes the effect of noise
step K and the effectiveness of using a generative album to
constrain the prior. Results are shown in Figure 8. From
the results we can see that as K increases both results using
either the constrained prior or not would have better quality
but would not be less faithful to the input image. However,
with constrained prior, we can see that the loss in faithfulness
is considerably less than the ones not using the constrained
prior.



Skip Guidance for Generative Album. We analyze the
effectiveness of our proposed Skip Guidance in generating a
generative album from a degraded input image. The album
should contain images close to the input yet of high qual-
ity, serving as anchor images for the constrained generative
space. Figure 9 shows that without guidance (i.e., direct
sampling of the album from yx), we obtain high-quality
images that do not closely resemble the input, thus failing
to effectively constrain the generative space. Conversely,
applying skip guidance too frequently lowers sample quality
due to the guidance’s approximate nature, potentially leading
to a constrained space filled with low-quality images.

Size of Personal Album. In Fig.2, we present results us-
ing personal albums of varying sizes. Generally, larger al-
bums enable the model to better preserve identity and details,
though the improvements diminish with size increase.
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Figure 2. Ablation on Size of Personal Album.
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E. Theoretical Analysis

In this section, we provide the theoretical analysis for the
intuition we claimed in the paper.

1. Adding noise to high-quality and low-quality images
can progressively align their distributions, making them
more similar over time.

For a clean image x( and low-quality image yg, we
can analyze the distribution of their noisy versions:
q(zt|zo) and q(y:|yo) which are

q(xt|xo) ~ N(Vawxo, (1 — ay)I) (D
q'(ytlyo) ~ N(Varyo, (1 — ax)I) 2

in which & is a hyper-parameter in the diffusion pro-
cess and will decrease as t increases. Therefore we can
compute the KL divergence between these two distribu-
tions:
KL(g,q') = ﬁ(xo —0)%. (3)
When more noise is added (¢ 1), K L(q,q') will de-
crease. Therefore the two distributions get more similar
as more noise is added.
2. The larger t is, the larger the generative space p(xo|xy)
spans.
In this case, we compute the entropy H of p(zo|z;)
to show how large the generative space spans. Let’s

consider g(x¢|xo) first:
q(x¢lzo) ~ N(Varro, (1 — a)I) “4)

Thus we can compute the entropy:
1 _ 1
H(q(xt|x0)) = 5 10g(27'r(1 — at)) + 5 (5)

For a deterministic denoising process (such as DDIM),
we can have H (p(zg|z:)) = H(q(2z¢|z0)). Therefore
H (p(zo|xt)) increases as t increases, showing the gen-
erative space spans larger.

F. Implementation Details

We provide the model details trained on datasets
(256256 and 512x512) along with the training/inference
parameters in Table 1. Due to the lack of 512x512 model
trained with diffusion models and its slow speed in both train-
ing and inference, we use 256 x 256 for standard benchmarks
while for personalized restoration, we utilize a 512x512
model.

We first train an unconditional generative model using
the model architecture based on [1, 6]. After this, we will
get a powerful generative prior that can output high-quality
images. Then we finetune the model using either the gen-
erative album or the personal album. For the generative
album, we first generate the images with the skip guidance
to ensure that our images follow the input. Then we finetune
the model using either the generative album or the personal
album. Finally, we restore the images using the constrained
prior.

256 x 256 512 x 512
Model Details
Diffusion Steps 1000 1000
Channels 128 256
Channels Multiple 1,1,2,2,4,4 0.5,1,1,2,2,4.4
Heads Channels 128 64
Attention Resolution 16 32,16,8
Dropout 0.1 0.1
Training Details
Batch Sizel! 256 32
Iterations 200k 2320k
Learning Rate 1074 1074
Optimizer Adam Adam
Weight Decay 0.0 0.0
Generative Album
Noise Step K 600
Skip Guidance 20
Finetuning Details
Batch Size 4 4
Iterations!?! 3000 5000
Learning Rate 107° 107°
Inference Details
Noise Step K 200 300

Table 1. Implementation details. [1] for AFHQ-Dog and AFHQ-
Cat (256 x256), the iterations are 50k and 100k respectively. [2]
for personalized finetuning, we use 5000 iterations.
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Figure 3. More qualitative comparison with previous methods on Wider-Test.
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Figure 4. More qualitative comparison with previous methods on Deblur-Test.
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Figure 5. More Qualitative Comparison on Personalized Face Restoration. We present three subjects here. For each subjects, we
compare two real-world low-quality images with previous methods. The subjects from the top to bottom are: subject B referenced in the
main paper, Biden and Hermione.
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Figure 6. Generative Album & Unconditional Generation from Fine-tuned Model. The generative album is generated with the input
image as guidance. Model fine-tuned with this album can then generate high-quality images that are close to the original input.
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Figure 7. Personal Album & Unconditional Generation from Personalized Model. We provide two sets of results.
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Figure 8. More Results of Ablation on Noise Step K and Constraining with Generative Album.
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Figure 9. The impact of skip guidance frequency on the generative album. Absence of skip guidance results in divergence from the input,
while overly frequent guidance produces low-quality anchor images.
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