Text-to-3D Generation with Bidirectional Diffusion using both 2D and 3D priors

Supplementary Material

In the supplementary material, we first introduce the data
processing pipeline in (§ 5.1), then provide more implemen-
tation details of the model architecture (§ 5.2), more training
details in (§ 5.3), and give more ablation results in (§ 5.4).

5.1. Data Processing

As mentioned in the main paper, we use 6k ShapNet-
Chair [I] and LVIS Objaverse 40k [4] as our training
datasets. We obtain the Objaverse 40k dataset by filtering
objects with LVIS category labels in the 800k Objaverse data.
To process data for the 2D diffusion process, we use Blender
to render each 3D object into 8 images with a fixed elevation
of 30° and evenly distributed azimuth from —180° to 180°.
These fixed view images serve as the ground truth multi-
view image set V. In addition, we also randomly render 16
views to supervise the novel view rendering of the denoised
radiance field F{. All the images are rendered at a resolu-
tion of 256 x 256. Since we adopt the DeepFloyd as our
2D foundation model which runs at a resolution of 64 x 64,
the rendered images are downsampled to 64 x 64 during
training. To process data for the 3D diffusion, we compute
the signed distance of each 3D object ateach N x N x N
grid point within a [—1, 1] cube, where N is set to 128 in
our experiments. To obtain the latent code C for each object,
we use the encoder in Shap-E [12] to encode each object and
apply ¢o = 0.4 level Gaussian noise to C to get noisy Cy,,
and then decode the condition radiance field during training.

Furthermore, both the ShapNet-Chair and Objaverse
dataset contains no text prompts, so we use Blip-2 [14]
to generate labels for the Objaverse object by rendering the
image from a positive view. For evaluation, we manually
choose 50 text prompts from the Objaverse dataset without
LVIS label, ensuring the text prompts have not been trained
during training.

5.2. Model Architecture Details

Our framework contains a 3D denoising network built upon
3D SparseConv U-Net and a 2D denoising network built
upon 2D U-Net. Below we provide more details for each of
them.

5.2.1 3D Denoising Network

Given the input feature volume

Sin = Concat(M, Sp3DConv(N),

Sp3DConv(Gy,)) ®

as discussed in Section 3.2 of the main paper, we use a 3D
sparse U-Net U/ to denoise the signed distance field. Specifi-

cally, we first use a 1 x 1 x 1 convolution to adjust the number
of input channels to 128. Then we stack four 3 x 3 x 3 sparse
3D convolution blocks to extract hierarchical features while
obtaining downsampled 8 x 8 x 8 feature grids. It is note-
worthy that we inject the timestep and text embeddings into
each sparse convolution block to make the network aware
of the current noise level and text information. In practice,
we first use an MLP to project the scalar timestep ¢ to high-
dimensional features and fuse it with the text embeddings
with another MLP to get the fused embeddings as follows:

emb = MLP2 (Concat(embtex[, MLPl (t)))a (9)

where embyy; denotes the text embeddings. Then in each
sparse convolution block, we project the fused embeddings
to scale 3 and shift :

B, = Chunk(MLP,;(GeLU(emb))), (10)

where GeLU is activated function, Chunk operation splits
the projected features into two equal parts along the channel
dimension. After that, we introduce modulation to the sparse
convolution by:

Sk+1 = (14 3)(SparseConv(GroupNorm(Sy,)))+-, (11)

where k denotes the feature level, Sy and Sy, 1 are the input
and output of the k-th level sparse convolution block. Subse-
quently, we use 4 sparse deconvolution blocks to upsample
the bottleneck feature grids with residuals linked from the
extracted hierarchical features:

Sy, = SparseDeConv(S;, ;) + Sk, (12)

where), | and S, are the input and output of the k-th level
sparse de-convolution block, and obtain the output features
S of the 3D U-Net.

To obtain the denoised signed distance field, we first
query each 3D position p in the fused feature grid S to fetch
its feature S(p) by Trilinear Interpolation. Then we apply
several MLPs (we adopt the ResNetFC blocks in [44]) to
predict the signed distance at position p:

0 = MLP(S(p), A(p)), (13)
where A(p) is the positional encoding:

A(p) =(sin(2°wp), cos(2°wp), sin(2'wp), cos(2'wp),

<y sin(28 7 Ywp), cos (287 wp)).

(14)

L is set to 6 in all experiments.

A beautiful dress made out of fruit, on o mannequin. Studio lighting, high qualit

w/o [
3D prior \

, high resolution.

w/o
3D prior

3D prior

w/o \
2D prior

normal

A dragown cat hybrid.

w/o
3D prior
2D prior

Figure 7. More ablation results showing the importance of both 2D and 3D priors in our model.

A silver platter piled high with fruits.

A lemur taking wotes in a journal.

An orangutan playing accordion with its hands spread wide.

A bear dancing ballet.

I A K B R 2 4 ¢

Aplg wearing a backpack.

V&P 9w &

Awn alrplane made out of wood.

W s Y sk @ wme dy o

A car maole out plzza.

A llonfish.

8% 4 £86 & 4

A llama weartng a suit.

I

5.2.2 2D Denoising Network

Our 2D denoising network contains a U-Net of the 2D foun-
dation model (DeepFloyd) and a ControlNet [46] modulation
module to jointly denoise the multi-view image set. In prac-

tice, given the M noisy images V; = {It’}ﬂil from the 2D

diffusion process and M rendered images { }j\il from the
3D diffusion process as mentioned in Section 3.3 of the main
paper, we first reshape both of them from [B, M, C, H, W]

to [B x M,C, H, W], where B, C, H, W denote batch size,

DOAECECT LR
X A B K X

' 4

P

Figure 8. More generated 3D objects by our model. Left side shows the diffusion output and right side shows the 3D object after optimization.

channel, height, width, respectively. Then we feed the noisy
images to the frozen encoder £* of DeepFloyd to get en-
coded features:

P = &*(Reshape({Z;} 1"),t,embex). (15)

P = {pk}szl where pF denotes the k-th features of the
total K feature levels. Simultaneously, we feed the rendered
images to the trainable copy encoder £ of ControlNet to
obtain the hierarchical 3D consistent condition features:

Q= S(Reshape({?—ti}i]\il), t,embyex), (16)

where () = {qk }szl. Subsequently, we decode P with the
frozen decoder D* of DeepFloyd and the condition residual
features (). Specifically, in the k-th decoding stage, we first
apply zero-convolutions to the condition feature ¢* and then
add it to the original decoded features as residuals:

£ ="+ Dy (071 + ZeroConv(¢¥), (17
where Dj_, denotes the k — 1-th frozen decoding layer of
DeepFloyd. In this way, we can denoise the multi-view noisy
images in a unified manner by introducing the 3D consistent
condition signal as guidance. In practice, we set M/ = 8 in
our experiments.

A llama wearlng a suit.

A lionfish.

PolificDreamer (6h+)

7

& £ 4 3§ i

Our Bidirectional Diffusion Results (40s)

Refinement Results (20min)

Figure 9. Comparison between our results with the object directly
generated by the optimization method (ProlificDreamer).

5.2.3 Discussion of Post-optimization

A key challenge in post-optimization lies in preserving the
consistency of the optimization outcomes with the inference
results produced by the feedforward network. To address
this challenge, our approach extends beyond the mere ad-
justment of hyperparameters. We have implemented a novel
optimization strategy, employing score distillation to refine
a residual radiance field. This refined field is subsequently
superimposed onto the initialized field, rather than directly
optimizing the initial radiance field itself. This method en-
sures that the optimized result remains closely aligned with
the original input, mitigating significant deviations.

5.3. More Training Details

We train our framework on 4 NVIDIA A100 GPUs with a
batch size of 4. For ShapeNet-Chair, the training takes about
8 hours to converge. For Objaverse 40k, the training takes 5
days. We use the AdamW optimizer with 8 = (0.9, 0.999)
and weight decay = 0.01. Notably, we set the learning rate
of the 2D diffusion model to 2 x 10~% while using a much
larger learning rate of 5 x 107> for the 3D diffusion model.

A bear dressed as a Lumberjack.

3 o
1
3D
o n n n n n

“step=960 step=920 step= Step=500 step=200 step=0
Figure 10. Visualization of our 2D and 3D denoising processes
(the maximum diffusion step is 1,000). The top two rows show
the rendering views of the implicit field during the 3D denoising
process, and the bottom two rows show the 2D sample results

during the 2D denoising process.

Diffusion Output ~ (.) ~ (. ,)
Figure 11. Ablation of range of noise level ¢ for SDS.

Input image
(sD2.1)

< t@ Q&& i /(:{

One-2-3-45 (Image-to-3D)

2D sampling (405) 3D sampling (40s)

gﬁgﬁ;m L

A fmg wearing ujmlut uwﬂjwus # *

Abenutiful vaiwbow ﬁ.sln

Ours (Text-to-3D)

Figure 12. Comparison with One-2-3-45 without post-optimization.

Pred novel view Mesh (45s)

ion with BiDiff initializa
Figure 13. Comparisons with Shap-E initialization.

BiDiff samplmg

5.4. More Experiments

54.1 Comparison with One-2-3-45

We provide the comparison with One-2-3-45 [17]. We use
text-to-image diffusion model to generate the reference im-
ages for One-2-3-45 due to it is an image-to-3d model. As
shown in Fig. 12, BiDiff performs better in both consistency

and geometry.

5.4.2 Comparison with Shap-E initialization

We demonstrated the results of using different 3D generated
feedforward models as post-optimization initialization. As
shown in Fig. 13, the Shap-E initialization may fail because
the initial shapes from Shap-E can not match the text and the
textures lack details. While BiDiff initialization performs
well even in complex situations.

5.4.3 Ablation for Priors

In Fig. 7, we provide additional results for the ablation of
3D and 2D priors mentioned in Sec. 4.3. Our method can
produce more realistic textures with 2D priors and more
robust geometry with 3D priors.

Range of noise level for SDS. The results in Fig. 11 il-
lustrate the impact of the noise level during the entire opti-
mization process, as discussed in Sec. 3.5. The 3D object
generated with a smaller noise range is closer to the diffusion
output. By adjusting the range of the noise level £,,,¢, we can
effectively control the texture similarity between geometries
before and after the optimization.

5.4.4 Visualization of 2D-3D Denoising

We also demonstrated the visualization of 2D and 3D de-
noising processes during bidirectional diffusion sampling as
shown in Fig. 10. The top two lines show the rendering views
of the implicit field during the 3D denoising process, and
the bottom two lines show the 2D sample results during the
2D denoising process. 3D and 2D representations are jointly
denoised, and in the early step of diffusion sampling, 3D
representations can provide basic geometric shapes, which
guides 2D diffusion to generate geometrically reasonable
images. In the later step of sampling, texture generation is
dominated by 2D diffusion.

5.4.5 More Results

In Fig. 8, we provide more high-quality results generated
by our entire framework. And in Fig. 9, we demonstrated a
comparison with the previous state-of-the-art optimization
method [41]]. Our approach not only significantly reduces
time costs but is also more robust in understanding geometry.

5.5. Limitations

A primary limitation of our Bidiff method stems from its
dependency on the capabilities of foundational 2D and 3D
models. Specifically, its creative potential is constrained by
the upper limits of 2D models, especially when interpreting

highly complex textual descriptions. Moreover, due to the
weaker existing 3D foundational models (e.g., Shap-E), the
3D performance of feedforward inference results is more
affected by the quality of training data. Additionally, the
post-processing stage, which is based on the score distillation
techniques, is subject to their prevalent issues, such as color
saturation. Consequently, Bidiff is not exempt from the
inherent challenges faced by the technologies it incorporates.

	. Introduction
	. Related Work
	. Method
	. Bidirectional Diffusion
	. 3D Diffusion Model with 2D Guidance
	. 2D Diffusion Model with 3D Guidance
	. Separate Control of Geometry and Texture
	. Optimization with BiDiff Initialization

	. Experiment
	. Text-to-3D Results
	. Comparison with other Generation Models
	. Abalation Studies

	. Conclusion
	. Data Processing
	. Model Architecture Details
	3D Denoising Network
	2D Denoising Network
	Discussion of Post-optimization

	. More Training Details
	. More Experiments
	Comparison with One-2-3-45
	Comparison with Shap-E initialization
	Ablation for Priors
	Visualization of 2D-3D Denoising
	More Results

	. Limitations

