
UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio, Video,
Point Cloud, Time-Series and Image Recognition

Supplementary Material

Appendix A: General Transformation from
Dialted Convolution to Non-dilated Large-
Kernel Convolution

Since ignoring pixels of the input is equivalent to inserting
extra zero entries into the conv kernel, a dilated conv layer
with a small kernel can be equivalently converted into a
non-dilated layer with a sparse larger kernel. Let k be the

kernel size and r be the dilation rate of the dilated layer, by

inserting zero entries, the kernel size of the corresponding

non-dilated layer will be (k − 1)r + 1, which is referred to

as the equivalent kernel size for brevity.

As discussed in the paper, to eliminate the inference

costs of the extra dilated conv layers in the Dilated Reparam

Block, we propose to equivalently transform the whole

block into a single non-dilated conv layer for inference. As

discussed before, let k and r be the kernel size and dilation

rate, respectively, the transformation from a dilated conv

layer’s kernel W ∈ Rk×k to a non-dilated layer’s kernel

W′ ∈ R((k−1)r+1)×((k−1)r+1) can be elegantly realized by

a transpose convolution with a stride of r and an identity

kernel I ∈ R1×1, which is scalar 1 but viewed as a kernel

tensor. That is

W′ = conv transpose2d(W, I, stride = r) . (6)

In general cases with multi-channel conv layers, let the

input channels, output channels, and number of groups be

cin, cout, and g, respectively, we denote the kernel by a 4D

tensor whose shape is cout × cin

g × k × k.

1) For a multi-channel depthwise (DW) layer, the trans-

formation is easily generalized from 2D to 4D - the iden-

tity kernel I is viewed as a 4D tensor I ∈ R1×1×1×1 and

we still follow function 6 to derive the equivalent kernel by

transpose convolution.

2) For non-DW cases (i.e., g < cin), the transformation

can be seen as splitting the kernel into slices (which can

each be seen as a DW kernel), converting the slices respec-

tively, and concatenating the resultant non-dilated slices up.

We present the code in pytorch (Fig. 4) and a test case

demonstrating the equivalency (Fig. 5).

Appendix B: Training Configurations

We present the detailed training configurations for image

classification, object detection, and semantic segmentation.

We have publicly released a reproducible training script and

trained weights for every model on GitHub.

ImageNet image classification. The training configura-

tions for the ImageNet-1K-only results shown in Section

4 are presented in Table 14. These configurations are sim-

ilar to common practices. For the experiments in Section

3, we use the same configurations, except that the training

epochs are set to 100 and the drop path rate is set to 0.1. For

the models pretrained with ImageNet-22K and then fine-

tuned on ImageNet-22K, the configurations are shown in

Table 14. Note that we follow the configurations adopted

by ConvNeXt for a fair comparison with ConvNeXt-S/B,

and the configurations used by InternImage for a fair com-

parison with InternImage-L/XL (the results with ImageNet-

22K-pretrained InternImage-S/B were not reported).

COCO object detection. For fair comparisons, we fol-

low common practices [49, 52] to initialize the backbone

with pretrained weights and train the models using a 3×
(36 epochs) schedule by default. The shorter side is resized

to 480−800 pixels, while the longer side does not exceed

1,333 pixels. All the models are trained with a batch size of

16 and AdamW [53] optimizer with an initial learning rate

of 1×10−4. We have publicly released the training configu-

ration files used in the MMDetection framework and trained

weights.

ADE20K semantic segmentation. We evaluate UniRe-

pLKNet models on the ADE20K dataset [97], and initial-

ize them with the pre-trained classification weights. The

learning rate is initialized with 1 × 10−4 and decayed with

the polynomial decay schedule with a power of 1.0. Fol-

lowing previous methods [49, 52], the crop size is set to

512 for the ImageNet-1K-pretrained models, and 640 for

ImageNet-22K-pretrained models. All segmentation mod-

els are trained with a batch size of 16 for 160k iterations. We

have publicly released the training configuration files used

in the MMSegmentation framework and trained weights.

Appendix C: Shape Bias

A higher shape bias means the model makes predictions

based more on the shape of objects rather than the tex-

tures, i.e., the model behaves more similarly to humans.

Therefore, a model with a higher shape bias may transfer

better to downstream tasks. UniRepLKNet demonstrates

significantly higher shape bias than existing ConvNets and

ViTs. Concretely, we test the shape bias of ImageNet-

22K-pretrained UniRepLKNet-L and RepLKNet-L with the

modelvshuman toolbox 5. Fig. 6 shows a significantly

5https://github.com/bethgelab/model-vs-human

import torch
import torch.nn as nn
import torch.nn.functional as F

def convert_dilated_to_nondilated(kernel, dilate_rate):
identity_kernel = torch.ones((1, 1, 1, 1))
if kernel.size(1) == 1:

This is a DW kernel
dilated = F.conv_transpose2d(kernel, identity_kernel, stride=dilate_rate)
return dilated

else:
This is a dense or group-wise (but not DW) kernel
slices = []
for i in range(kernel.size(1)):

dilated = F.conv_transpose2d(kernel[:,i:i+1,:,:], identity_kernel, stride=
dilate_rate)

slices.append(dilated)
return torch.cat(slices, dim=1)

Figure 4. Pytorch code to convert a dilated conv layer’s small kernel to a non-dilated layer’s larger sparse kernel.

def test_equivalency(in_channels, out_channels, groups, large_kernel_size, small_conv_r,
small_conv_k):
equivalent_kernel_size = small_conv_r * (small_conv_k - 1) + 1
large_conv = nn.Conv2d(in_channels, out_channels, kernel_size=large_kernel_size,

padding=large_kernel_size // 2, groups=groups, bias=False)
dilated_conv = nn.Conv2d(in_channels, out_channels, kernel_size=small_conv_k,
padding=equivalent_kernel_size // 2,

dilation=small_conv_r, groups=groups, bias=False)
H, W = 19, 19
x = torch.rand(2, in_channels, H, W)
origin_y = large_conv(x) + dilated_conv(x)
equivalent_kernel = convert_dilated_to_nondilated(dilated_conv.weight.data, small_conv_r)
rows_to_pad = large_kernel_size // 2 - equivalent_kernel_size // 2
merged_kernel = large_conv.weight.data + F.pad(equivalent_kernel, [rows_to_pad] * 4)
equivalent_y = F.conv2d(x, merged_kernel, bias=None, padding=large_kernel_size // 2,

groups=groups)
print(’relative error:’, (equivalent_y - origin_y).abs().sum() / origin_y.abs().sum())

test_equivalency(in_channels=4, out_channels=4, groups=1,
large_kernel_size=13, small_conv_r=3, small_conv_k=3)

Figure 5. A test case demonstrating the equivalency of the transformation.

higher shape bias of UniRepLKNet - UniRepLKNet makes

20% more decisions based on the overall shapes of ob-

jects. This improvement is particularly remarkable since

RepLKNet is already known to have a high shape bias

(Fig. 7 is directly taken from the supplementary material

of the RepLKNet paper without any modifications).

6.1. Appendix D: Training Memory Footprint

The extra parallel dilated branches in Dilated Reparam

Block consume more training resources, which is ac-

ceptable considering the performance improvements. We

present the peak GPU memory footprint and training speed

in Table 16. With a bigger model and bigger data,

we may trade the performance for higher training speed

and lower memory consumption by replacing the Dilated

Reparam Block with a single large-kernel conv layer fol-

lowed by Batch Normalization layer. We test the peak mem-

ory footprint and actual training throughput while training

UniRepLKNet-S with 224×224 inputs and a batch size of

4096 on a node with eight A100 GPUs. Note that such re-

Table 14. Detailed training configurations of ImageNet-1K-only models. Apart from the configurations shown in the table, we use

random left-right flipping, random resized crop, color jitter of 0.4, Auto-augment, and no repeated augmentation for every model.

settings UniRepLKNet-A UniRepLKNet-F UniRepLKNet-P UniRepLKNet-N UniRepLKNet-T UniRepLKNet-S

input scale 224 224 224 224 224 224

batch size 4096 4096 4096 4096 4096 4096

optimizer AdamW AdamW AdamW AdamW AdamW AdamW

LR 4×10−3 4×10−3 4×10−3 4×10−3 4×10−3 4×10−3

LR schedule cosine cosine cosine cosine cosine cosine

weight decay 0.05 0.05 0.05 0.05 0.05 0.05

warmup epochs 5 5 5 5 5 5

epochs 300 300 300 300 300 300

mixup alpha 0.3 0.3 0.3 0.5 0.8 0.8

cutmix alpha 0.3 0.3 0.3 0.5 1.0 1.0

erasing prob. 0.25 0.25 0.25 0.25 0.25 0.25

label smoothing ε 0.1 0.1 0.1 0.1 0.1 0.1

drop path rate 0.0 0.0 0.1 0.1 0.2 0.4

Table 15. Detailed training configurations of models pretrained with ImageNet-22K (IN-22K pt) and then finetuned on ImageNet-
1K (IN-1K ft). Apart from the configurations shown in the table, we use random left-right flipping, random resized crop, color jitter of

0.4, Auto-augment, and no repeated augmentation for every model.

settings
UniRepLKNet-S UniRepLKNet-B UniRepLKNet-L UniRepLKNet-XL

IN-22K pt IN-1K ft IN-22K pt IN-1K ft IN-22K pt IN-1K ft IN-22K pt IN-1K ft

input scale 224 384 224 384 192 384 192 384

batch size 4096 512 4096 512 4096 512 4096 512

optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW AdamW

LR 4×10−3 5×10−5 4×10−3 5×10−5 4×10−3 5×10−5 4×10−3 5×10−5

LR schedule cosine cosine cosine cosine cosine cosine cosine cosine

weight decay 0.05 1×10−8 0.05 1×10−8 0.05 1×10−8 0.05 1×10−8

warmup epochs 5 0 5 0 5 0 5 0

epochs 90 30 90 30 90 20 90 20

mixup alpha 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0

cutmix alpha 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0

erasing prob. 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

label smoothing 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.3

drop path rate 0.1 0.2 0.1 0.2 0.1 0.3 0.2 0.3

Table 16. Training costs.
Peak memory Training throughput

Dilated Reparam Block 24.6GB 6642 images/s

Single large-kernel conv layer 20.8GB 9675 images/s

sults are significantly influenced by the hardware environ-

ment and specific implementation; thus, they should be con-

sidered as references only.

Figure 6. Shape bias of ImageNet-22K-pretrained UniRepLKNet-

L and RepLKNet-31L.

Figure 7. Shape bias of ImageNet-1K and ImageNet-22K-

pretrained RepLKNet-31B and Swin-B. This figure is directly

taken from the supplementary material of RepLKNet without any

modifications

