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1. Introduction
This supplemental material offers more details regarding
the use of our method in an optimization framework, the
effect of motion duration on the generated motions, dif-
ferent applications of our method, and more qualitative re-
sults. Please see the Supplementary Video, where we ex-
tensively demonstrate the realism and adaptability of our
generated reaching motions across diverse scenarios.

The video effectively contains: (1) the problem and our
motivation, (2) our method and key ideas, (3) multiple ex-
ample motions, and (4) different applications of our method
such as extension to reaching dynamic goals. The video
serves as a dynamic and illustrative supplement, showcas-
ing our contributions in a manner that is hard to show in a
paper format.

2. Technical Implementation
2.1. Model Architecture

WANDR c-VAE architecture [2] employs an Encoder and a
Decoder, each composed of fifteen layers in a Multi-Layer
Perceptron (MLP) configuration. We integrate relu acti-
vation functions, dropout and layer normalization at each
stage for enhanced performance. The latent space is repre-
sented as a 64-dimensional vector. In our design, the condi-
tion signal of the c-VAE is concatenated with the input delta
(in the case of the Encoder) and the latent vector (in the case
of the Decoder).

2.2. Training Details

We developed and trained our method using the PyTorch
framework [3]. We train it for 900 epochs on 4 Tesla V100
GPUs. We use a batch size of 512, resulting in approxi-
mately 20 hours of training duration. For optimization, we
use Adam [1] with a starting learning rate of 1e − 4 that
linearly decreases to 1e− 5 during training.

A crucial aspect of our training regimen includes per-
forming a teacher-forcing method, which involves feeding
the model’s own predictions back into the input. This pro-

cess facilitates the Decoder network in acquiring the ca-
pability to compensate for potential errors that may arise
during the prediction of deltas. During the whole process
of the training, the c-VAE is being trained on the task of
auto-encoding the motion deltas. As the training progresses,
we additionally perform motion generation for a few steps.
Specifically, we reconstruct the deltas, integrate them to ob-
tain the subsequent pose, and then sample from the latent
space while conditioning on the generated pose. We repeat
this process for up to s steps increasing the s linearly from
0 up to 10 along the span of 50 epochs and then keeping it
fixed.

2.3. Optimization Details

The formulation of our method as a c-VAE provides us with
a smooth latent space that allows us to search this manifold
in an optimization process to reach various target goals. For
this, we apply specific constraints to the decoder’s output,
i.e. the body poses, and optimize the latent space represen-
tation of the poses to achieve the desired motions.

In Tab. 2 of the main manuscript, we explore how
optimizing a trained motion prior performs compared to
our method without any optimization, in achieving various
goals. The results show that WANDR without optimization
performs better than the other methods, even with optimiza-
tion.

To do the optimization, we first generate a motion to
reach a goal using WANDR, and then refine the motion
through optimization aiming to align the wrist’s position in
the final frame more closely with the target goal.

In order to achieve this, we employ a dual-component
loss function:

Lopt = Lnorm + Lgoal

Here, Lnorm represents the log-likelihood of the motion’s
latent vectors under a normal distribution. Lgoal calculates
the mean square error between the wrist’s final frame loca-
tion and the goal. Lnorm seeks to maintain the generated
motion within plausible human movements, while Lgoal
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Figure S.1. Generated motions for different goals with the same time constraint (a) and for a similar goal with varying time constraints (b).
The results show that our dynamic intent features enable the adaptability of WANDR to generate time-controlled motions.

specifically tunes the motion to bring the wrist in proximity
to the goal in the final frame. Notably, even though Lgoal is
applied only on the final frame, its gradient flows across the
whole sequence since the autoregressive generation process
is fully differentiable.

Sec. 3 shows our method’s ability to produce motions
with different time durations, as well as its integration with
the optimization framework presented in the main paper.

3. WANDR Applications

In this section we show that our method can be used in var-
ious scenarios and for different applications.

3.1. Time-controlled Motions

One key aspect of our intention features is the dependency
of the wrist-intention vector on the goal-reaching time, en-
abling the generation of time-controlled motions. As men-
tioned in the main paper, this vector is computed by dividing
the distance from the wrist to the goal by the time remain-
ing to reach it. During inference, by changing the reaching
time or distance, the generated motions adapt and become

rapid or slow. Figure S.1 presents two scenarios: (a) reach-
ing different goals within the same time duration, and (b)
reaching a goal within different time durations. These cases
illustrate how the motion varies in response to the time and
distance parameters. For qualitative examples, please see
the Supplementary Video.

3.2. Optimization-enabled extensions

Multi-goal Reaching: We show that our unique intention
features enable the generation of motions to achieve mul-
tiple goals sequentially. Although trained for single-goal
achievement, the dynamic nature of our intention features
allows for multiple goal definitions during inference. These
features are recalculated and updated at each iteration of
WANDR’s autoregressive process, adapting to changes in
goal locations. Figure S.2 illustrates this capability, where a
motion sequence is generated to achieve several goals. This
adaptability also extends to tracking and following moving
targets, as shown in our Supplementary Video.
Waypoint Following: Our method extends to the applica-
tion of reaching goals while at the same time having the
virtual human passing through arbitrary waypoints. Specif-



Figure S.2. A demonstration of WANDR generating a motion sequence to achieve multiple goals. The intention features are recalculated
and updated after each iteration of the autoregressive process, enabling dynamic goal adjustments during the motion generation.

ically, we are able to choose a waypoint and have the human
pass from it at a chosen frame, while still reaching for the
goal at the end of the motion. To achieve this, we extend
the optimization approach described in section Sec. 2.3 with
the addition of an extra mean square error loss between the
ground projection of the pelvis and the waypoint location
for a particular frame. Fig. S.3 showcases an example of
this application, underlining the adaptability of WANDR in
navigating through waypoints while simultaneously reach-

ing a goal (please see video for an example motion). It is
worth noting that passing through waypoints can be trivially
extended to following trajectories, since a trajectory can be
approximated by sampled waypoints on a curve.

3.3. Extending WANDR to other joints

WANDR can be, in a straight forward way, extended to
other joints just by replacing the wrist position with the
joint of interest in the definition of Iw. For example, by re-
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Figure S.3. A generated motion from WANDR for waypoint (blue
sphere) following while reaching for a goal (pink sphere). The ini-
tial generation of WANDR follows the motion marked with the
black arrows. After optimization, the motion manages to pass
through the waypoint, while still reaching for the goal at the end of
the motion. This illustrates that WANDR provides a smooth latent
space for the motions that can be aligned with the goal-reaching
motion with predefined waypoints using an optimization process.

placing the wrist with the pelvis joint, we can get a motion
generator that can produce motions that follow waypoints.
However, we note that controlling multiple body joints si-
multaneously is not trivial with the current design. It would
require redesigning the intention features to enable learning
which joint corresponds to which intention feature.

4. Perceptual Study
Throughout our experiments, we empirically found that the
foot skating metric has a high correlation with the quality
of the motion. Nevertheless, in order to properly evaluate
the perceptual quality of WANDR’s generated motions we
conduct two perceptual studies through amazon mechanical
turk. The studies aim at quantifying how close WANDR’s
motions are perceptually compared to real human motions
taken from AMASS. In the first study, users rate the real-
ism of the motions using with a 5-level Likert scale (1 →
non-realistic & 5 → realistic). Only one motion is shown
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Figure S.4. Overlay of the distribution of training pseudo-goals
with the evaluation goals (×) of WANDR in all pairwise combi-
nations of their cylindrical coordinates. Our evaluation goals uni-
formly cover a range of goals both outside and inside the training
distribution.

at a time. In the second study, users are asked to choose
the most realistic motion between two, one coming from
WANDR and one coming from an AMASS sequence. We
clip motions to a 2 second duration and only show motions
from WANDR that succeeded in reaching their goal.

In the first study, AMASS ground-truth motions score
3.8±1/5 vs 3.4±1/5 for WANDR. The comparative study
finds that 30.2% of the users preferred WANDR motions
over AMASS. These findings indicate that the WANDR
motions are perceptually close to real motions.

5. Evaluation Distribution
To better demonstrate that WANDR has been evaluated on
out-of-distribution data, in Fig. S.4 we visualize the density
of the pseudo-goal training locations (in cylindrical coordi-
nates) and overlay the goal locations (marked as ×) used to
evaluate WANDR. We clearly observe that most evaluation
goals lie on either low probability or unseen locations.
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