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1. Riemannian centers in Graff
In the following, we detail the iterative approach (Graff)

that we used as a comparison to our method. Recall that
the Riemannian center of mass m is defined as a point P
that minimizes the sum of squared geodesic distances to all
given points {Pi}:

m = argmin
P∈Gr(k,d)

∑
i

d2(P,Pi). (1)

1.1. Metric

For two k-flats F ,Fi in Rd, the function

d(F ,Fi) =

k+1∑
j=1

ϕ2
j

1/2

(2)

with {ϕj} denoting the affine principal angles between F
and Fi, is the standard metric on Graff(k, d) that we im-
plemented. In Sec. 1.3, we explain how this metric can be
generalized to flats of different dimensions.

1.2. Gradient computation

Let flats Fi be given and represented in Stiefel coordi-
nates Yi. Recall that the gradient of the sum of squared
distances in Eq. (1) and Eq. (2) is given by [1]

−
m∑
i=1

exp−1
Y (Yi), (3)

for a Stiefel coordinate Y and exp−1
Y (X) denoting the

derivative of the geodesic that connects Y and X. This can
be computed as [2]

exp−1
Y (Yi) = Ui tan

−1(Σi)V
T
i , (4)

where the matrices on the right-hand side are computed
from the SVD

(I−YYT)Yi(Y
TYi)

−1 = UiΣiV
T
i . (5)

After computing the gradient G̃ in the ambient space as in
Eq. (3) and (4), it has to be projected into the tangent space
of Y by computing G = G̃− G̃YYT [2].

1.3. Subspaces of different dimensions

The function in Eq. (2) can be adapted to flats of dif-
ferent dimensions. If F is a k-flat and Fi is an l-flat with
k ≤ l, they yield k + 1 affine principal angles. Note that
Y ∈ R(d+1)×(k+1) and Yi ∈ R(d+1)×(l+1). Since the
principal angles are by definition as small as possible, the
Riemannian distance between F and Fi corresponds to the
distance between F and the closest k-flat that is contained
in Fi. It also coincides with the distance between Fi and the
closest l-flat that contains F . While this is not a valid dis-
tance measure by itself as two distinct flats can have a zero
distance (that is, for example, the case when one is a subset
of the other), it can be easily re-written to become a valid
metric, while yielding the same gradient for their squared
function [3]:

dGraff(F ,Fi) =

|k − l|π
2

4
+

k+1∑
j=1

ϕ2
j

1/2

. (6)

The function in Eq. (6) corresponds to the distance between
F and the furthest k-flat that is a subset of Fi, or equiva-
lently, to the distance between Fi and the furthest l-flat that
contains F . This is achieved by adding additional |k − l|
principal angles with the maximum value of π

2 . It is evi-
dent that the gradients of the squares of the sums in Eq. (2)
and Eq. (6) w.r.t. the Stiefel coordinates of F coincide, as
the term |k− l|π

2

4 is independent of the orientation and dis-
placement of F .

The derivative of the geodesic in Eq. (4) has the same di-
mensionality as the Stiefel coordinates of its first argument
Y, namely (d + 1) × (k + 1). So while the dimension of
the flats {Fi} in Eq. (3) may be varying, the gradient has
the dimensionality of Y, as desired. The only necessary ad-
justment is that the matrix YTYi from Eq. (5) is not square
and the inverse has to be replaced by the pseudo-inverse.

1.4. Exponential map

Given a flat F in Stiefel coordinates Y and a direction
H that is in the tangent space of Y (e.g., the gradient of the

1



0 2 4 6 8 10
x

0.0

0.2

0.4

0.6

0.8

1.0

y

x = 0

x = 5

Riemannian mean

0 2 4 6 8 10
x

0.0

0.2

0.4

0.6

0.8

1.0

y

x = 5

x = 10

Riemannian mean

Figure 1. The Riemannian mean (purple) of two parallel lines
(blue and red) depends on their distance to the origin.

geodesic), the image of [2]

Y(t) = (YV cos(tΣ) +U sin(tΣ))VT

yields a geodesic in Graff(k, n) through Y, with H =
UΣVT being a reduced SVD of H and t ∈ R (e.g., the
step size in gradient descent). While the exponential map
in Sec. 1.4 yields a point in the Stiefel manifold represent-
ing Gr(k + 1, d + 1), it may not correspond to a point
in Graff(k, d). Recall that Graff(k, d) is embedded into
Gr(k + 1, d+ 1) as a submanifold. Thus, we transform the
current iterate back into Stiefel coordinates at each iteration.

1.5. Projection into Stiefel coordinates

It is crucial to select a good technique, as it can signif-
icantly impact the convergence rate. We tried multiple ap-
proaches and found out that one which preserves the column
space of Y works the best, which is detailed in the follow-
ing.

1. Firstly, it must be ensured that each entry in the last
row, except for the last one, is zero. So we compute
mi =

yd+1,k+1

yd+1,i
for every column i ∈ {1, . . . , k} and

then subtract the last column of Y scaled by mi from
the ith column (this is similar to the Gaussian elim-
ination scheme, but here, we operate on columns in-
stead of rows). After this step, the columns of Y are
no longer orthonormal.

2. Secondly, we orthogonalize the modified Y. In our
case, we use the QR decomposition.

1.6. Equivariance properties

Methods that generate Riemann centers on Graff are not
equivariant to isometries, i.e., orthogonal transformations
and translations – in contrast to the methods we introduce
based on squared distance fields. Concretely, Riemannian
centers are equivariant to orthogonal transformations R ∈
O(d), but not to translations.

Orthogonal transformations That the Riemannian cen-
ter in Graff is equivariant w.r.t. rotations and reflections
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Figure 2. The Riemannian mean (purple) of two intersecting lines
(blue and red) depends on the location of their intersection.

follows from the fact that affine principal angles, similar to
the ordinary principal angles, are invariant. Let FR denote
the set of points of the flat F after R ∈ O(d) is applied to
them:

FR = {y ∈ Rd | y = Rx, x ∈ F}. (7)

Then, FR has the following Stiefel coordinates:

YR =

[
RA Rb

0T
√
1 + ∥b∥2

]
, (8)

as (RA)TRb = 0 if ATb = 0 and ∥Rb∥ = ∥b∥. It
is apparent that the methods on the affine Grassmannian
are equivariant, as for any two flats F ,F ′ it holds that
YT

RY′
R = YTY′, thus the affine principal angles between

F and F ′ coincide with the angles between FR and F ′
R.

This result holds for any distance measure that depends on
the affine principal angles.

Translations Figs. 1 and 2 demonstrate that the Rieman-
nian center in Graff is not equivariant under translations,
neither the orientation of the flat nor its shift. Fig. 1 clearly
shows that the Riemannian center of two parallel lines is not
equidistant to them, and depends on their relative distance
to the origin. Fig. 2 illustrates that when two lines inter-
sect in the origin (left), their Riemannian mean’s angle is
equidistant to the basis lines. If the same lines are shifted
away from the origin (right), the mean does not necessarily
equal their bisector.

1.7. Alternative method

In the iterative approach on the Grassmannian, since the
current iterate is projected into Stiefel coordinates at each
iteration anyway, it may be unnecessary to compute the
exponential map in some cases. Thus, we have experi-
mented with a variation of the previously described method,
which functions as follows: (1) We compute the average
of geodesics from Y to all {Yi} and add it to Y, and
(2) we project the result back onto Graff(k, d) in Stiefel
coordinates. If the input and output dimensions coincide
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Figure 3. Running time comparison between the iterative approach
on the Grassmannian [2] and our modification that omits the com-
putation of the geodesic for different input and output dimension.

(kin = kout), this modification yields similar results as the
usual method, while benefitting from a lower running time
(c.f. Fig. 3). The lower running time stems from a lower
number of iterations and the omission of an SVD calcula-
tion per iteration.
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