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Supplementary Material

In this supplementary document, we first provide imple-

mentation details of our proposed approach. Furthermore,

we present additional evaluation metrics for all perception

tasks tackled by DUALAD. Next, we discuss experimental

findings regarding our design choices and temporal consis-

tency. Finally, we provide a detailed runtime analysis for

different variants of our model and show additional qualita-

tive results in the attached video file.

6. Implementation Details

Our work is built using the MMDetection3D framework[4].

Furthermore, we inherit various design choices from

StreamPETR [26, 30], UniAD [10, 27] and VAD [11, 28].

We truly thank all authors and contributors of those projects.

Our main model configuration closely follows Stream-

PETR [26, 30] since our dynamic stream design inherits

the proposed query propagation through time as well as the

geometric positional encodings for object-to-image cross-

attention. All choices for the static stream are adopted from

UniAD [10].

Data Augmentation: We use the six surround camera im-

ages of nuScenes as input, down scaled to a resolution of

800× 320 pixels. During training, we apply a random crop

augmentation by choosing a random crop of 47%− 62.5%
of the image before down scaling.

Model Settings: We use a VovNet-V2-99 [12] as im-

age backbone and use the last two feature scales as input

to the FPN [17]. As in previous work, a latent dimen-

sion L = 256 is adopted for all latent embeddings of our

model. We use |Qobj| = 900 object queries consisting

of the top-k propagated from the previous time step with

k = 256 and 644 newly spawned objects queries respec-

tively. For the BEV-queries we follow UniAD [10] and

use |QBEV| = 200 × 200. The used detection range is

[−51.2m, 51.2m] for x and y direction, resulting in an ef-

fective grid resolution of 0.512m.

The proposed dual-stream transformer utilizes six con-

secutive layers and performs self-attention within Qobj,

cross-attention of Qobj, temporal self-attention of QBEV and

the interpolated grid queries from the last frame [10, 14],

cross-attention from QBEV to image features as in [14] and

dynamic-static cross-attention of Qobj and QBEV. For the

dynamic object cross-attention to the image features we

only choose the highest spatial resolution feature scale as

in [26, 30].

During training, we adopt query-denoising [13] and

streaming video training as proposed in [30] to accelerate

the convergence as well as Flash-Attention [5] to reduce the

memory requirements. With the aforementioned settings,

the training for 24 epochs requires 18GB of GPU memory

and takes approximately one day for stage-I and two days

for stage-2 on eight NVIDIA A100 GPUs.

7. Performance Evaluation

We provide evaluation results for various model configu-

rations of DUALAD. As in the main paper, we indicate

all stage-I models that are trained on perception tasks only

e.g. object detection, map segmentation and multiple ob-

ject tracking as DUALAD-I and the configuration that was

trained on all tasks in an end-to-end fashion as DUALAD-

II respectively. Furthermore, we adopt the notation intro-

duced in Table 6 to denote different configurations of DU-

ALAD. The version marked with ∅ does not use the pro-

posed dynamic-static cross-attention, while ↕ describes a

version that uses bidirectional stream interaction by using

global attention for the interaction from the static to the dy-

namic stream. The version of our model that is trained on

the reduced sensor set by using front and back facing cam-

eras in an alternating fashion only is indicated with ⊖.

Object Detection: A detailed evaluation of all metrics

specified in the official nuScenes detection benchmark [21]

is shown in Table 8. For detailed metric definitions, we

kindly refer to [1, 21].

Map Segmentation: The results for all model configu-

rations on map segmentation are shown in table Table 9.

The evaluation is performed for four different classes as

proposed in UniAD [10] and we compute the IoU between

predicted and ground truth segmentation maps.

Multiple Object Tracking: A detailed evaluation of all

metrics specified in the official nuScenes tracking bench-

mark [22] is shown in Table 10. For detailed metric defini-

tions, we kindly refer to [1, 22].

Motion Prediction: A detailed evaluation of motion

prediction results for all dynamic classes of the nuScenes

dataset [1] is shown in Table 11. As in UniAD [10] we

adopt a confidence threshold cmotion = 0.4 during inference

to select object queries that are passed to the motion head.

7.1. Discussion of design choices

The extensive ablations on various tasks and configura-

tions of our proposed approach (see Table 8, Table 9, Ta-

ble 10) validate our different design choices. Our model

consistently benefits from temporal information and the



Table 8. Object Detection Results.

Name Temporal

BEV

Sensor

Drop

mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ NDS↑

DUALAD-I ✗ ✗ 46.93 0.62 0.27 0.39 0.27 0.18 56.16

DUALAD-I∅ ✓ ✗ 47.74 0.62 0.27 0.45 0.28 0.19 55.78

DUALAD-I↕ ✓ ✗ 49.37 0.58 0.27 0.39 0.26 0.20 57.65

DUALAD-I¶ ✓ ✗ 48.21 0.60 0.27 0.32 0.28 0.20 57.44

DUALAD⊖ ✓ ✓ 42.86 0.65 0.28 0.47 0.32 0.19 52.22

DUALAD-I ✓ ✗ 49.56 0.58 0.26 0.40 0.26 0.20 57.81

DUALAD-II ✓ ✗ 48.16 0.57 0.27 0.41 0.29 0.19 56.68

Table 9. Map Segmentation Results.

Name Temporal

BEV

Sensor

Drop

Lanes↑ Drivable↑ Divider↑ Crossing↑

DUALAD-I ✗ ✗ 31.73 67.52 26.57 10.99

DUALAD-I∅ ✓ ✗ 33.97 69.35 29.49 12.33

DUALAD-I↕ ✓ ✗ 33.86 67.78 29.11 12.18

DUALAD-I¶ ✓ ✗ 34.26 69.71 29.71 13.87

DUALAD⊖ ✓ ✓ 31.53 66.60 26.77 10.14

DUALAD-I ✓ ✗ 34.68 70.50 30.29 12.82

DUALAD-II ✓ ✗ 34.17 70.01 29.96 12.25

proposed dynamic-static cross-attention. Adding another

cross-attention block to perform bidirectional interaction

does not significantly improve the performance of static

map perception or overall temporal consistency, which is in

line with our hypothesis that map segmentation might not

benefit from dynamic agent perception. We leave the inves-

tigation of other interaction designs and other dense tasks

that depend on the dynamic agent perception e.g. free-space

estimation for future work.

The stage-II configuration of our approach yields a

slightly decreased perception performance when compared

to the stage-I model. This could result from the fact that

in stage-II the model might focus on certain scene parts that

are more relevant for the currently planned trajectory. Addi-

tionally, a fast detection of highly dynamic agents and tem-

poral consistency might be crucial for longer planning hori-

zons, which is in line with the improvements of the stage-II

model in terms of Track Initialization Duration (TID) and

Longest Gap Duration (LGD) as shown in Table 10.

The DUALAD-I⊖ version of our model that only has ac-

cess to front or back facing cameras in an alternating fashion

maintains high temporal consistency by query propagation

even without sensor data for some areas in the scene. We re-

fer to the attached video for a qualitative example. However,

the initial detection of newly appeared object is not possible

if no sensor data for the corresponding scene area is avail-

able or consistent tracking might be challenging, especially

for highly dynamic or hardly visible agents in the scene.

Since our base model especially improves over previous ap-

proaches in such challenging cases, this explains the drop in

perception performance by −6.7mAP and −10.7AMOTA

respectively (see Table 8, Table 10).

7.2. Runtime Analysis

We evaluate the runtime of the stage-II configuration of

DUALAD. The results of the entire system as well as the

runtime of the intermediate task modules are shown in Ta-

ble 12. DUALAD runs with 4.12FPS on a single NVIDIA

A100 GPU. The dual stream transformer uses a significant

amount of the model’s total runtime due to the expensive

attention operations from object queries and BEV-queries

to sensor data. Since all downstream tasks use the result-

ing representations, the task heads only add a small amount

of additional runtime. Please note that our codebase con-

tains various operations which could be further optimized.

However, improving the runtime and memory requirements

of end-to-end approaches remains a challenging topic for

large scale application of such approaches.

7.3. Integration to VAD [11]

The version of our model that is based on VAD [11] is de-

noted as DUALVAD, please note that we report the perfor-

mance of the stage-II model to allow for a fair comparison

with the provided model in [28]. In contrast to the other



Table 10. Multiple Object Tracking Results.

Name Temporal

BEV

Sensor

Drop

AMOTA↑ AMOTP↓ RECALL↑ MT↑ ML↓ FAF↓ IDS↓ FRAG↓ TID↓ LGD↓

DUALAD-I ✗ ✗ 51.63 1.16 59.69 3006 2104 49.08 658 671 1.25 1.96

DUALAD-I∅ ✓ ✗ 51.94 1.13 59.27 3107 2148 48.37 769 657 1.24 1.84

DUALAD-I↕ ✓ ✗ 54.39 1.09 61.11 3232 2077 46.76 588 580 1.14 1.70

DUALAD-I¶ ✓ ✗ 52.32 1.13 60.74 3272 1908 49.46 726 695 1.09 1.67

DUALAD⊖ ✓ ✓ 44.39 1.22 53.96 2658 2476 53.57 940 936 1.44 2.01

DUALAD-I ✓ ✗ 55.09 1.09 60.71 3279 2031 46.21 663 588 1.12 1.70

DUALAD-II ✓ ✗ 52.57 1.11 59.62 3159 2166 46.25 774 593 1.07 1.61

Table 11. Motion prediction results of DUALAD-II for all object

categories on the nuScenes benchmark [22].

Name EPA↑ minADE↓ minFDE↓ miss rate↓

Car 54.97 0.35 0.39 0.035

Truck 43.12 0.37 0.38 0.017

Bus 42.31 0.51 0.56 0.057

Trailer 26.79 0.55 0.53 0.017

Pedestrian 45.28 0.46 0.61 0.003

Motorcycle 39.02 0.32 0.37 0.011

Bicycle 36.89 0.28 0.30 0.002

Table 12. Runtime evaluation of DUALAD-II on a single

NVIDIA-A100 for 500 frames of the nuScenes validation set.

Misc describes various non-optimized computations e.g. bound-

ing box decoding and positional encodings.

Module Runtime (ms) ↓

Image Backbone 19

Dual Stream Transformer 59

Detection Head 17

Map Head 23

Motion Head 24

Planning Head 39

Misc 80

Total 242

configurations, VAD relies on a ResNet-50 [9] as image

backbone, an input resolution of 1280× 720 pixels [11, 28]

and a shorter detection range around the ego vehicle of

[−30m, 30m] in x and [−15m, 15m] in y respectively. A

detailed evaluation of the perception performance is given

in Table 14. DUALVAD outperforms VAD [11] by +2.7
mAP for dynamic object perception and achieves a slightly

higher vectorized map perception performance while also

heavily improving downstream tasks such as motion predic-

tion (see Table 4) and open-loop planning (see Table 5). The

runtime of DUALVAD-II is shown in Table 13. In this con-

figuration, our model runs at 3.32FPS on a single NVIDIA

Table 13. Runtime evaluation of DUALVAD-II on a single

NVIDIA-A100 for 500 frames of the nuScenes validation set.

Misc describes various non-optimized computations e.g. bound-

ing box decoding and positional encodings.

Module Runtime (ms) ↓

Image Backbone 11

Dual Stream Transformer 114

Detection Head 58

Map Head 4

Motion Head 7

Planning Head 3

Misc 104

Total 301

A100 GPU. Due to the larger input image size, the run-

time of the dual stream transformer increases significantly

as compared to our base configuration.

7.4. Qualitative Results

Together with this document, we provide a video that shows

qualitative results of our approach for various scenes from

the nuScenes validation set. Those include complex traffic

scenes, a setting with unsynchronized sensors, challenging

lighting and adverse weather conditions and results for the

vectorized map representation. DUALAD-II demonstrates

robust and consistent performance for all perception tasks,

as well as downstream performance for motion prediction

and open-loop planning.



Table 14. Perception Results for VAD [11] based models. *Results taken from official repository. mAPMap denotes the mAP of vectorized

map perception as defined in [11, 16].

Name mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ NDS↑ mAPMap↑

VAD [11]* 33.92 0.59 0.28 0.53 0.40 0.23 46.02 47.5

DUALVAD-II 36.64 0.59 0.27 0.57 0.35 0.23 48.00 47.9
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