
Supplementary Material:
Learning to Predict Activity Progress by Self-Supervised Video Alignment

Gerard Donahue
Northeastern University

Boston, MA, USA
donahue.g@northeastern.edu

Ehsan Elhamifar
Northeastern University

Boston, MA, USA
e.elhamifar@northeastern.edu

In the supplementary material, we present details on the
GTCC window, the GTCC drop curriculum, hyperparame-
ters, and the MCN architecture. Additionally, we show two
studies showing frame-retrieval results and online progress
estimations on in-the-wild datasets.

1. Window Proportion
In Sec. 4.1 of the main paper, we introduced the window (w)
which is used when computing µβ,k and σ2

β,k for the fi-
nal loss, Lmulti-cbr. When developing GTCC, we considered
three options for handling this window, shown in Fig. 1.

Option 1: No Window. Similar to TCC [1], we experi-
mented with no window. In this case, all of β(k) is used for
calculating µβ,k and σ2

β,k. This approach is ill-suited for re-
peating actions, as two peaks will cause a central mean that
is not representative of either peak. Fig. 1 shows low error
when using no window, even though there are two peaks
that both are distant from index i.

Option 2: Central Window. Next, we considered a central
windowing approach, where i lies central in the window of
size w. We observed that a central window still wrongly
causes low error in many cases. If i is central to the window
and the distribution observes high variance, then the mean
will be central. This is an issue because in Lmulti-cbr, mean
error is in the numerator and variance is in the denomina-
tor. So with high variance and low error we will observe
extremely low error when there are no peaks in β around i.

Option 3: Stochastic Window. To overcome both afore-
mentioned challenges with option 1 and 2, we employed a
stochastic window in the GTCC formulation, where i exists
in a random position in the bounds of the window. Shown
in Fig. 1, we are able to capture the peaks of the distribu-
tion in proximity to i, exhibiting high error correctly. Intu-
itively, if the trained GTCC model can be robust to where
the window is placed and observes low error for many ran-
dom windows surrounding i, then there is a strong peak at
i.

Setting w. We set w dynamically based on the length, N ,
of the given video, U . Therefore, we set a proportion hy-
perparameter for each dataset, such that w = proportion·N .
For both in-the-wild datasets (EgoProceL and COIN) we set
the proportion to 0.2, and for monotonic datasets (Pouring
and Penn Action) we set the proportion to 0.5.

2. Drop Curriculum
To increase the stability of GTCC during training, we em-
ployed a curriculum for phasing drop capability into GTCC
throughout training. The general philosophy of this cur-
riculum is to begin training by aligning all frames, and then
slowly allowing the model to begin identifying frames as
droppable frames. To do this, we define a value η ∈ [0, 1]
that determines how slowly the curriculum progresses. If η
is close to 1, then the drop capability is slow to arise. With
η, we slightly modify the sigmoid function used in Eq. 10
of the main paper to be

σdrop(x) = ηE + (1− ηE) · σ(x),

which vertically shrinks the sigmoid function. Here, E is
the currect epoch and σ is the traditional sigmoid function.
This then leaves Eq. 10 of the main paper to be

Pdrop(ui|V) = σdrop([u⊤
i 1

]
c(V)

)
,

in practice. The value for η are shown in the next section.

3. Hyperparameters
Below is the table of relevant hyperparameters for our
method. Please note that all hyperparameters for the base-
lines were taken from the original papers.

4. MCN Details
Multi-head Cross-task Network (MCN) begins by encoding
the frames of the video with a single base network, which
is the same ResNet architecture used in the single-task set-
ting to obtain video U ∈ RN×D. This embedded video is

1

No Window Central Window Stochastic Window

𝑖 𝑖 𝑖𝜇 𝜇 𝜇

𝛽 𝛽 𝛽

Figure 1. Here we show the affect of no window, central window, and our stochastic window on the loss calculation over discrete β
distributions. The window is shown with darkened probability densities (white densities lie outside the window). The vertical green line
represents frame ui, and the vertical orange line represents the mean index calculated from the darkened probabilities within the window.
The red area between i and µ represents error.

Hyperparameter Value

Batch Size 2
Number of Frames 20
Optimizer ADAM
Learning Rate 1.0× 10−4

Softmax Temperature (τ) 0.1
Alignment Variance (λ) 1.0× 10−3

Drop-curriculum speed (η) 0.95 (E,C) 1.00 (PA,P)
GMM Components (K) 15 (E,C) 5 (PA,P)
Window Proportion 0.2 (E,C) 0.5 (PA,P)
Output Dimensionality (D) 128

Table 1. Hyperparameter Values

then given to L different head networks, which are fully-
connected feed-forward networks. Each network outputs
it’s own video embedding, and all of the features are con-
catenated in the time dimension, where the attention net-
work takes this concatenated matrix as input, and decides
the active head networks at each time instant.

Because the MCN architecture is built for the multi-task
setting, where one network is trained to align all tasks in-
dividually, we scale the number of attention heads, L, with
the number of tasks being trained on for each dataset. As
such, for Penn Action (L = 13), for CMU-MMAC (L = 5),
and for EGTEA Gaze+ (L = 7). For all dropout networks,
head networks, and attention networks in the MCN exper-
iments, we used simple fully-connected feed-forward net-
works with 256, 1024, 512, 256 neurons in each layer, re-
spectively.

References
[1] D. Dwibedi, Y. Aytar, J. Tompson, P. Sermanet, and A. Zisser-

man. Temporal cycle-consistency learning. IEEE Conference
on Computer Vision and Pattern Recognition, 2019. 1

	. Window Proportion
	. Drop Curriculum
	. Hyperparameters
	. MCN Details

