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Abstract

In this supplementary material, we provide a detailed
experimental configuration (Appendix A). Furthermore,
we present more details about our RESISTANCE in Ap-
pendix B, including training protocols of component few-
shot learners, diverse unification strategies, and how we
extend robust few-shot learning with single-step adversary
generation. In addition, we present visualization results
(Appendix C) and hyper-parameter analysis (Appendix D).

A. Experimental Setting
Below, we provide a detailed experimental configuration of
few-shot image classification datasets and implementation
details of our RESISTANCE method.

A.1. Datasets

We conduct our experiments on three standard few-shot im-
age classification datasets: Mini-ImageNet [68], CIFAR-
FS [53], and FC100 [65]. Mini-ImageNet comprises 100
classes with 600 images of 84×84 pixels for each class,
which is derived from ImageNet [58]. The dataset is typ-
ically divided into 64 training classes, 16 validation classes,
and 20 test classes. CIFAR-FS follows the same data split
of 100 categories but with a small resolution of 32×32 pix-
els, which is a subset of CIFAR-10/100 [63]. Few-shot-
CIFAR100 (FC100) is also derived from CIFAR-100 but is
split based on 20 super-classes to minimize the information
overlap. Each super-class contains 5 generic classes. This
challenging dataset is divided into 12, 4, and 4 super-classes
for training, validation, and testing, respectively.

Following previous adversarial few-shot learning works
[60, 70], we primarily focus on both 5-way 1-shot and 5-
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way 5-shot problems. In a 5-way 1-shot task, the few-shot
classifier learns from 5 classes consisting of only one sam-
ple per class (support set), which is subsequently evaluated
on 15 samples per class (query set). Both training and eval-
uation follow such a few-shot task construction protocol
to simulate real-world few-shot learning scenarios. Query
samples from each few-shot task are incorporated for op-
timizing the class concept learner, whereas the similarity
learner is episodically trained on sampled few-shot tasks.
All the experimental results are obtained over 2,000 ran-
domly sampled few-shot tasks (episodes).

A.2. Implementation Details

In line with the settings of previous works [60, 70] and
RobustBench [56], we employ Conv-4 [68] and ResNet-12
[61] as the target few-shot classification models. Conv-4
is built on four convolutional blocks with 64 channels per
layer. ResNet-12 comprises four residual blocks with 64,
160, 320, and 640 channels, respectively. During the train-
ing stage, we enable a consistent view of training data for
both few-shot learners (same episodes used for each type of
learner). The class similarity learner learns from the relation
labels between support and query images. The class concept
learner directly learns to predict the object category in the
full label space based on query images. In addition, both the
component few-shot learners in our RESISTANCE share
the same optimization configuration: a Stochastic Gradient
Descent (SGD) optimizer with a momentum factor of 0.9,
cyclic learning rate schedule [67] with a maximum learning
rate η = 0.1, and a weight decay factor of 5 × 10−4. We
adversarially train the model for 50 epochs (512 few-shot
tasks per epoch) for all three datasets.

For adversary generation during the training stage,
we adopt the iterative Projected Gradient Descent (PGD)
method [64] with 7 steps (step size α = 2/255) on the
similarity learner and class concept learner, respectively.



Instead of using random initialization, we use the cross-
branch class-wise global perturbation for initialization. We
primarily focus on the ℓ∞-norm threat model with the max-
imum perturbation radius of ϵ = 8/255. Note that the ad-
versarial perturbation for each learner is initialized by the
global adversarial perturbation that can be efficiently ob-
tained by conducting a single-step gradient ascent on each
few-shot learner. The embedding model unification process
starts at epoch T = 40 with a frequency of m = 10 iter-
ations to redistribute the network parameters of the unified
embedding model to both similarity and class concept learn-
ers. For computational efficiency, we adopt a single-step
adversary generation strategy. The regularization hyper-
parameters are set as β = 0.99, γ = 0.5, and τ = 0.5.

Upon obtaining the unified embedding model as the
training stage completes, we can directly transfer it to un-
foreseen few-shot tasks by coupling it with a rebuilt clas-
sification head. The choices of the classification head can
vary depending on the specific requirements of downstream
few-shot tasks. In this paper, we adopt an N -way logistic
regression-based classifier optimized on extracted support
feature embeddings for few-shot image classification. Fol-
lowing previous research [59, 60, 70], we adopt the evalua-
tion protocol that encompasses accuracy on both legitimate
query samples and their adversarial counterparts. In this
paper, we mainly consider robustness against three strong
white-box adversarial attacks: PGD [64] with 20 steps, CW
[54], and Auto Attack (AA) [55].

B. Details of RESISTANCE

Below, we provide more details of RESISTANCE, includ-
ing diverse unification strategies, details of cross-domain
few-shot robustness evaluations, and details of the extension
of RESISTANCE with single-step adversary generation.

B.1. Extension with Single-step Adversary

In this section, we provide more details about how we com-
bine our RESISTANCE with the single-step adversary gen-
eration for computational efficiency improvement. The ma-
jority of computational cost for robust few-shot learning
lies in multi-step adversarial generation. A well-established
study has demonstrated the feasibility of combining single-
step adversarial samples with adversarial training using
abundant training data [52, 57, 62, 66, 71]. Nevertheless,
such studies on adversarial robustness in the context of few-
shot learning have not been conducted. Thus, we explore an
efficient extension of robust few-shot learning by replacing
multi-step adversary generation with its single-step counter-
parts x̂SGL = x+ δSGL during the training stage. A generic
single-step adversary generation formula that approximates
the worst-case adversarial perturbation to solve the inner

maximization in Eq. (4) and (7) as follows:

δSGL = Π′
B(ϵ)

[
δ0 + α sign

(
∇xLKL(px∥px+δ0)

)]
, (13)

where Π′
B(ϵ) denotes the projection operator onto the ℓ∞-

norm constraint box (notice Π′ can be any projection strat-
egy, e.g., soft-projection rather than the clip as in case of
Π). The single-step adversarial perturbation against each
few-shot learner is randomly initialized by δ0 ∼ Ω, i.e.,
δ0 is drawn from some distribution Ω. Recall that we only
modify the adversarial generation strategy for both similar-
ity and class concept learning for inner maximization. The
global adversarial initialization perturbation is switched off
in the setting where we approximate untargeted multi-step
adversarial generation with advanced single-step adversary
generation strategies for computational efficiency. Specif-
ically, by adopting such a single-step strategy, we enjoy a
significant reduction in the computational cost for the gra-
dient backpropagation. We also show that RESISTANCE
with single-step adversarial samples achieves comparable
robustness to its multi-step counterpart.

B.2. Cross-domain Few-shot Robustness

The cross-domain transfer aims to generalize the feature
embedding model learned on one dataset (source domain)
to conduct inference on another dataset (target domain) in
the few-shot setting. Such two datasets are characterized
by disjoint semantic categories, different image resolutions,
or other domain factors, posing a large domain gap. In our
setting, the unified embedding obtained on the source data
is treated as a feature extractor. For each test episode, we
simply rebuild the classification head at a negligible com-
putational overhead, e.g., logistic regression. Subsequently,
we measure the classification performance of clean samples
and their adversarial counterparts from the target domain.
Impressive cross-domain transfer results of RESISTANCE
highlight its efficacy in maintaining adversarial robustness
across diverse target domains.

B.3. Unification Strategies of Learners

As discussed in Section 4.5 of the main text, we investi-
gate a series of unification strategies to combine similarity
and class concept learners into the same framework for bet-
ter performance, including prediction ensemble, feature en-
semble, and multi-teacher distillation. We provide further
details of these unification strategies below.
Prediction Ensemble. Following the principle of ensem-
ble learning, the prediction ensemble strategy applies aver-
age voting on the output predictions during the inference
stage of separately trained learners. This strategy aggre-
gates the output probabilities (softmax logits) from individ-
ual learners, averaging them to formulate a unified predic-
tion. Note that the predictions here are obtained based on
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Figure 6. Illustration of our cross-branch class-wise global adversarial initialization perturbation (global perturbation), and both untargeted
single-step and multi-step adversarial perturbations applied to our unified model. We also provide their corresponding adversarial samples
and the prediction confidence associated with the ground-truth category.

the learned feature embedding models alongside their re-
constructed classification heads tailored for each few-shot
task when conducting the robustness evaluation.
Feature Ensemble. In contrast to the prediction ensemble
(average of prediction scores), the feature ensemble strat-
egy focuses on the aggregation of feature representations
during the few-shot evaluation. For this unification strat-
egy, feature representations of both robust few-shot learners
are concatenated along the feature dimension, and then the
classification head is rebuilt based on each episode.
Multi-teacher distillation. We here describe the unification
process based on the popular multi-teacher knowledge dis-
tillation [69], which performs feature-level distillation from
two well-trained few-shot learners (cf . our parameter-level
distillation). The multi-teacher distillation step is given as:

min
θu

E(x,y)∼Q

[
(1− ω)∥fθs(x)− fθu(x)∥22+

ω∥fθc(x)− fθu(x)∥22
]
,

(14)

where 0 ≤ ω ≤ 1 balances the learning tendency towards

the similarity or class concept learner, respectively. The
distilled unified feature embedding model is then applied
to novel few-shot tasks by coupling it with a classification
head during the evaluation stage. In contrast to our RE-
SISTANCE, this strategy is time-consuming as one has to
backpropagate w.r.t. parameters θu of the unified network.

In comparison with the above-mentioned unification
strategies, RESISTANCE enjoys efficient adversarially ro-
bust few-shot learning distillation at the parameter level.
Our unified embedding model dynamically inherits feature-
level knowledge from both similarity and class concept
learners during a cooperative optimization process. Hence,
our proposed parameter-level co-distillation strategy can
obtain better classification accuracy on clean and adversar-
ial samples in the context of few-shot learning.

C. Visualization

In addition to the t-SNE visualization and attention maps
presented in the main manuscript, we also visualize some
adversarial samples (derived from diverse adversarial per-
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Figure 7. Hyper-parameter sensitivity of our RESISTANCE on
clean accuracy and (Auto-Attack) robust accuracy using ResNet-
12 on CIFAR-FS. We present the weighting factor tuning of λ in
Fig. 7a and τ in Fig. 7b. The adjustment of the starting epoch
of unification T is provided in Fig. 7c, and the redistribution fre-
quency m is in Fig. 7d.

turbations) alongside their legitimate counterparts. Figure 6
shows that adversarial samples effectively reduce the classi-
fication confidence of the ground-truth class despite their vi-
sual similarity to clean samples. Note that the cross-branch
class-wise global perturbation is disruptive against all learn-
ers in our framework. On the other hand, single-step and
multi-step adversarial samples, specifically crafted against
the unified model, show a more significant disruptive effect
on the unified model.

D. Hyper-parameter Analysis

Below, we investigate the contributions of individual
modules of RESISTANCE by varying specific hyper-
parameters. We report the natural and robust accuracy of
the unified model across varying hyper-parameter configu-
rations. Figure 7 shows that tuning λ provides a trade-off
between the clean performance and adversarial robustness
due to the impact λ has on the natural and boundary risks
[72]. Choosing the starting epoch T of parameter redistri-
bution to the similarity and class learners also provides a
desired trade-off between the clean performance and adver-
sarial robustness. As feature encoders become more stable
with more episodes, redistribution may be enabled to ensure
individual encoders do not become extremely different in
terms of their parameter spaces. Furthermore, selecting an
appropriate redistribution frequency m ensures that feature
embeddings derived from various few-shot learners neither
diverge significantly nor converge prematurely.

Table 11. Co-distillation with different training data for the class
concept learner on the clean and (Auto-Attack) robust accuracy
using ResNet-12 on the CIFAR-FS dataset.

Training data 1-shot 5-shot

Clean Robust Clean Robust

Support & query 55.21 40.68 73.11 56.60
Only query 55.78 41.57 74.83 58.76

E. Additional Setting
Incorporating support samples for co-distillation. In
the main paper, we focus on a co-distillation framework
that solely utilizes query samples to train the class learner
(including cross-branch class-wise adversarial generation).
Furthermore, we evaluate whether using both support and
query samples with the class learner can be beneficial in
Table 11. The results show that adding support samples to
the batch for the class concept learner actually deteriorates
the robustness. We suspect this may be due to the fact that
the similarity learner forms prototypes from support sam-
ples and adjusts them as it learns. However, using the class
concept learner with support samples may implicitly inter-
act with prototypes in undesired ways if the class concept
learner is permitted to use support samples.
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