
GPLD3D: Latent Diffusion of 3D Shape Generative Models by Enforcing
Geometric and Physical Priors

Supplementary Material

A. Proof of Theorem 1
As any probability distribution can be approximated by a
mixture of Gaussian with a prescribed approximation error,
it is sufficient to prove Theorem 1 in the setting where pgt

is given a mixture of Gaussians.

Theorem 3 (Formal statement of Theorem 1) Consider a
mixture of Gaussians with K mixture components, where
each component (wi,mi,⌃i) is given by its mixture weight
wi, the mean mi, and the covariance matrix ⌃i:

pgt(z) :=
KX

i=1

wi

(2⇡)
d
2 |⌃i|

1
2

exp
�
�1

2
(z�mi)

T⌃�1(z�mi)
�
.

(9)
Let pdata be the empirical distribution defined by n random
samples from pgt(z). Then

E
pdata

E
z⇠pgt

krzpdata(z,�)�rzpgt(z,�)k2 = O(
1

�4
). (10)

Proof of Theorem 3. Note that

pgt(z,�) :=
KX

i=1

wiexp
�
� 1

2 (z �mi)T⌃i(�)�1(z �mi)
�

(2⇡)
d
2 |⌃i(�)|

1
2

,

where

⌃i(�) := ⌃i + �
2 · Id

Denote pdata = {z1, · · · , zn}. Then

pdata(z,�) :=
1

n

nX

i=1

1

(2⇡)
d
2 �d

exp(�kzk2

2�2
).

It follows that

rz log(pgt(z,�)) = �
KX

i=1

wi⌃i(�)�1(z �mi)

(2⇡)
d
2 pgt(z,�)|⌃i(�)|

1
2

(11)

rz log(pdata(z,�)) = �

nP
i=1

exp
�
� kz�zik2

2�2

�
(z � zi)

�2
nP

i=1
exp

�
� kz�zik2

2�2

�

(12)

To estimate the order of (10) in �, we consider the regime
of � where � � max

1iK
(kmik, k⌃ik). In this regime, we

have when z ⇠ pgt ,

pgt(z,�) ⇡
KX

i=1

wi

�
1� 1

2 (z �mi)T⌃i(�)�1(z �mi)
�

(2⇡)
d
2 |⌃i(�)|

1
2

(13)

exp(�kz � zik2

2�2
) ⇡ 1� kz � zik2

2�2
(14)

Substituting (13) into (11), we have

rz log(pgt(z,�))

⇡�

KP
i=1

wi

|⌃i(�)|
1
2
+ 1

2

KP
i=1

wi(z�mi)
T⌃i(�)

�1(z�mi)

|⌃i(�)|
1
2

⇣ KP
i=1

wi

|⌃i(�)|
1
2

⌘2

·
KX

i=1

wi⌃i(�)�1(z �mi)

|⌃i(�)|
1
2

(15)

In the large � regime, we have

k⌃i(�)
�2k = O(

1

�2
).

Therefore,

rz log(pgt(z,�)) ⇡ �

KP
i=1

wi⌃i(�)
�1(z�mi)

|⌃i(�)|
1
2

KP
i=1

wi

|⌃i(�)|
1
2

(16)

Similarly, substituting (14) into (12), we have

rz log(pdata(z,�))

⇡� 1

�2n2

nX

i,j=1

(1� kz � zik2

2�2
)
�
1 +

kz � zjk2

2�2

�
(z � zi)

⇡� 1

�2n

nX

i=1

�
1� kz � zik2

2�2
+

kz � zik2

2�2

�
(z � zi)

=� z

�2
+

1

�2n

nX

i=1

zi (17)

Combing (16) and (17), we have

krz log(pgt(z,�))�rz log(pdata(z,�))k = O(
1

�4
)

(18)

⇤

B. Proof of Theorem 2
We then quantify the difference between rz log(preg(z;�))
and rz log(pgt(z;�)). Suppose we have the following.

Note that

rz log(preg(z;�))

=
1

preg(z;�)
rzpreg(z;�)

=

R
y rzpreg(z � y)exp

�
� kyk2

2�2)dy
R
y preg(z � y)exp

�
� kyk2

2�2)dy
(19)

Introduce

e1(z,y) =
rzpreg(z � y)

preg(z)
� rzpgt(z � y)

pgt(z)
, (20)

e2(z,y) =
preg(z � y)

preg(z)
� pgt(z � y)

pgt(z)
. (21)

Applying Taylor series, we obtain

e1(z,y) =
+1X

k=0

(�1)k

k!

⇣ 1

preg(z)
h
@
k+1

preg(z)

@k+1z
,⌦kyi

� 1

pgt(z)
h@

k+1
pgt(z)

@kz
,⌦k+1yi

⌘
,

and

e2(z,y) =
+1X

k=1

(�1)k

k!

⇣ 1

preg(z)
h
@
k
preg(z)

@kz
,⌦kyi

� 1

pgt(z)
h@

k
pgt(z)

@kz
,⌦kyi

⌘
.

Define

ck(z) := k
@kpreg(z)
@kz

preg(z)
�

@kpgt (z)
@kz

pgt(z)
k.

It follows that

ke1(z,y)k 
+1X

k=0

ck+1(z)kykk

k!
, (22)

and

|e2(z,y)| 
+1X

k=1

ck(z)kykk

k!
, (23)

Rearranging (20) and (21), we arrive at

rzpreg(z � y)

=e1(z,y)preg(z) +
preg(z)

pgt(z)
rzpgt(z � y), (24)

and

preg(z � y)

=e2(z,y)preg(z) +
preg(z)

pgt(z)
pgt(z � y), (25)

Substituting (25) and (24) into (19), we obtain

rz log(preg(z;�))

=

R
y

�
rzpgt(z � y) + pgt(z)e1(z,y)

�
exp(�kyk2

2�2)dy
R
y

�
pgt(z � y) + pgt(z)e2(z,y)

�
exp(�kyk2

2�2)dy

(26)

Introduce

�k =
1

�d+k

Z

y2Rd

kykkexp
�
� kyk2

2�2

�
dy.

It is easy to check that

�k =

Z

y2Rd

kykkexp
�
� kyk2

2

�
dy

where � is the Chi-distribution. Let

cg(z,�) :=
1

�d

Z

y
rzpgt(z � y)exp(�kyk2

2�2
)dy (27)

c(z,�) :=
1

�d

Z

y
pgt(z � y)exp(�kyk2

2�2
)dy (28)

Combing (22), (23), (27), (28), and (26), we have that in
the small regime �,

krz log(preg(z;�))�rz log(pgt(z;�))k

k
R
y

�
rzpgt(z � y) + pgt(z)e1(z,y)

�
exp(�kyk2

2�2)dy
R
y

�
pgt(z � y) + pgt(z)e2(z,y)

�
exp(�kyk2

2�2)dy

�
R
y rzpgt(z � y)exp(�kyk2

2�2)dy
R
y pgt(z � y)exp(�kyk2

2�2)dy
k

pgt(z)
c(z,�)c1(z)�0 + �

�
✏2c(z,�) + ✏1kcg(z,�)k

�

c(z,�)
�
c(z,�)� pgt(z)�✏1

�

(29)

where

✏1 :=
1X

k=1

ck(z)

k!
�
k�1

�k

✏2 :=
1X

k=1

ck+1(z)

k!
�
k�1

�k

⇤

C. Details on the Optimal Hyper-Parameters
We adopt three principles from [56] to determine �in(�),
�out(�), and �skip(�). First, we want the variance of the
weighted inputs to be 1, i.e.,

Var
z⇠pdata,n

�
cin(�)(z + n)

�

+
�reg(�)

�data(�)
Var

z⇠preg,n

�
cin(�)(y + n)

�
= 1 (30)

Note that

Var
z⇠pdata,n

(cin(�)(z + n) = cin(�)
2(�2

data + �
2) (31)

Var
z⇠preg,n

(cin(�)(y + n) = cin(�)
2(�2

reg + �
2) (32)

Substituting (31) and (32) into (30), we obtain

cin(�) =
1q

�2
data + �2 +

cratio(c2reg+�
2)

�2(coff+�)2

(33)

Second, we constrain that the weighted fitting targets to
have unit variance, i.e.,

1

cout(�)2

⇣
Var

z⇠pdata,n

�
z � cskip(�)(z + n)

�

+
�reg(�)

�data(�)
Var

z⇠preg,n

�
z � cskip(�)(z + n)

�⌘
= 1 (34)

Note that

Var
z⇠pdata,n

�
(z � cskip(�)(z + n)

�

=(1� cskip(�))
2
�
2
data + cskip(�)

2
�
2 (35)

Var
z⇠preg,n

�
z � cskip(�)(z + n)

�

=(1� cskip(�))
2
�
2
reg + cskip(�)

2
�
2 (36)

Substituting (35) and (36) into (34), we obtain

c
2
out(�) = (1� cskip(�))

2
�
�
2
data +

cratio�
2
reg

�2(coff + �)2
)

+ cskip(�)
2(�2 +

cratio

(coff + �)2
) (37)

Third, we select cskip(�) to minimize cout(�), i.e.,

cskip(�) = argmin
cskip(�)

cout(�)
2
.

This leads to

cskip(�) =
�
2
data +

cratio�
2
reg

�2(coff+�)2

�2
data +

cratio�2
reg

�2(coff+�)2
+ �2 + cratio

(coff+�)2

(38)

Substituting (38) into (37), we arrive at

cout(�) =

vuuut
�
�2

data +
cratio�2

reg
�2(coff+�)2

��
�2 + cratio

(coff+�)2

�

�2
data + �2 +

cratio(�2
reg+�

2)

�2(coff+�)2

(39)

Now we determine �data(�) and �reg(�). Note that their
relative values are determined as

�reg(�)

�data(�)
=

cratio

�4(coff + �)2
.

Therefore, it remains to determine the relative values of
�data(�) for different �. To this end, we follow EDM (pp
29) [20] and enforce that

�data(�)cout(�)
2 = 1.

This leads to

�data(�) =
�
2
data + �

2 +
cratio(�

2
reg+�

2)

�4(coff+�)2�
�2

data +
cratio�2

reg
�4(coff+�)2

��
�2 + cratio

�2(coff+�)2

� .

D. Correlations between the Quality Checker
with Human Evaluations

Following [45], we utilize Pearson’s Correlation Coeffi-
cient [35] to assess the correlation between the mesh qual-
ity score and the FPD score with human evaluations, mea-
suring the linear relationship between metrics. We use
other shape generators (i.e., NW [18], 3DILG [55], and
LAS [59]) to generate shapes for the categories of chair,
airplane, and table. Additionally, we employ shap-e [19]
to generate objects in five unseen categories (umbrella, di-
amond ring, sword, shoes, and clothing). For each genera-
tor, we generate 200 synthetic objects for the known cate-
gories and 100 synthetic objects for the unseen categories,
each using different random seeds. We asked 20 ordinary
users to score the mesh quality of the generated shapes.
An example of the user interface for human evaluation is
shown in Figure 7. We evaluated the correlation of peo-
ple with Quality Score and Fréchet PointNet++ Distance
(FPD). FPD⇤ indicates that PointNet++ used in this met-
ric is trained with ShapeNetCore55 as well as additional
labeled synthetic shapes. The ’Quality Score’ is obtained
from the quality prediction branch of the classifier.

We evaluated FPD only at the model level, as it requires
distributional statistics over multiple samples, preventing
sample-level calculations. As shown in Table 3, Quality
Score achieved 0.708 Pearson’s in all samples, indicating a
strong correlation with human evaluations. FPD⇤ and FPD
achieve 0.702 Pearson’s and 0.625 Pearson’s respectively,
indicating FPD⇤ correlates with human evaluations much
stronger than alternative FPD. Note that Shap-e is not in-
cluded in calculating FPD because there is no ground-truth
data distribution.

Instructions: We will present images of a common object from four different views, using these
images to determine the quality of the object's geometric shape. We divide the quality of the mesh
into five levels, from high to low: excellent, good, fair, poor, and very poor. Please rate the quality of
the mesh based on factors such as smoothness, the amount of floating debris, and physical stability.

View1 View2 View3 View4

*1. ID: Mesh-1

Mesh Quality

Excellent Good Fair Poor Very Poor

Figure 7. Rating selection UI. Instructions for raters in human evaluations are located above the rating selection.

Quality Score FPD FPD⇤

Model Level - -0.625 -0.702
Sample Level 0.708 - -

Table 3. Person correlations calculated with human judgments for
Quality Score and FPD. Sample-level correlations are calculated
on every individual samples, while model-level correlations are
determined using all samples generated by a specific model.

E. Implementation Details
E.1. Quality Checker Computation Acceleration
To address this computational issue, we train neural net-
works to directly predict geometric feasibility and physical
stability scores to avoid decoding a latent code during train-
ing time. We used a transformer to predict the score, the
architecture of which is similar to that of the shape decoder.
As shown in Figure 8, the transformer consists of a series
of self-attention blocks. This approach avoids decoding the
latent code into a shape and then sample a point cloud for
classification. We trained different networks to predict the
geometric feasibility and physical stability scores.

E.2. Training Details
For category-conditioned generation, we use the ShapeNet-
v2 dataset [6] as a benchmark and utilize the training/val
splits in [55, 56]. And each shape is converted to a water-
tight mesh and then normalized to fit within its bounding
box ([�1, 1]3). We use 3DS2VS [56] as our backbone. For
shape encoding, the point cloud of size 2048 is input to the
pre-trained encoder to get the latent code zt 2 pdata. For
regularized diffusion, we use the 3DS2VS latent diffusion
model [56] as our generator to obtain the latent code z

0
,

which is then fed into the quality checker to obtain a qual-
ity score q

 (g�(z)). In this work, we pass the latent code
z

0 2 preg when the quality score q
 exceeds 0.9. We ini-

tialize our diffusion model with weights [56] and train it on
8 V100 using AdamW optimizer with batch size of 192 for
6,400 epochs. In each batch, we sample 2/3 latent codes
from pdata and 1/3 latent codes from preg. The learning rate
is set to 4e�5 and gradually decreased using the cosine de-
cay schedule. For category-conditioned generation, objects
from all categories are used for training, and the category
label is mapped to an embedding. This embedding is then
input into the denoising neural network as conditional in-
formation. We employ the default configurations for the
EDM hyperparameters and set additional hyperparameters
cratio = 10�2 and coff = 1.0 in this paper. During sampling,
we obtain the final latent code via 40 denoising steps.

F. Additional Results
F.1. Image-conditioned Generation
For the single view object reconstruction, we use the 2D
rendering dataset provided by 3D-R2N2 [13]. In this
dataset, each shape is rendered in RGB images with dimen-
sions of 224 × 224 pixels, captured from 24 randomly se-
lected angles. We also adopt CLIP [31] as the image en-
coder and compare GPLD3D with 3DS2VS [56] and Atlas-
Net [17] in Figure 9.

F.2. Text-conditioned Generation
For text-driven shape generation, we use the Text2shape
dataset [8], which provides descriptions of the chair and ta-
ble categories in ShapeNet. We adopt CLIP [31] as the text
encoder and compare GPLD3D with 3DS2VS [56] and SD-
Fusion [11]. For GPLD3D and 3DS2VS, we generate the

Figure 8. The architecture of the score prediction network.

Figure 9. Image-conditioned 3D shape generation. We compare GPLD3D with AtlasNet [17] and 3DS2VS [56] on the 3D-R2N2 (chair)
dataset. GPLD3D generates high-quality shapes with more details.

meshes by running Marching Cubes on a 1283 grid. The re-
sults of our text-conditioned generation model can be found
in Figure 10. Qualitatively, GPLD3D generates shapes of

better quality and with fewer geometric artifacts.

Figure 10. Text-conditioned 3D shape generation. We compare GPLD3D with SDFusion [11] and 3DS2VS [56] on the Text2Shape dataset
for chairs. GPLD3D generates shapes with more details and fewer geometric issues, while complying with the description.

3DS2VS GPLD3D

Figure 11. Unconditional generation between GPLD3D and 3DS2VS on OmniObject3D [51] dataset.

F.3. Additional experiment on the OmniObject3D

We conducted an additional experiment on the OmniOb-
ject3D [51] dataset, which comprises 6,000 scanned objects
in 190 categories. We train an unconditional model using
this dataset and Fig. 11 shows some qualitative results com-
pared with 3DS2VS [56].

F.4. 3D Shape Texturing

We showcase an application that uses our text-conditioned
GPLD3D F.2 to generate 3D shapes with detailed geometry,
and then employs a depth-conditioned text-to-image 2D dif-
fusion model [7, 57] to generate consistent textures. The re-
sults are shown in Figure 12, We can generate high-quality

object meshes based on the input text prompts and obtain
textured objects through the texture generation algorithm.

F.5. More Visual Galleries on Different Categories
We provided more visual results for category-conditioned
generation across different categories (Chair in Figure 13,
Table in Figure 14, Airplane in Figure 15, Sofa in Figure 17,
Car in Figure 16, Lamp in Figure 18).

Figure 12. Text-conditioned 3D shape texturing. Firstly, we generate an object mesh using text-conditioned GPLD3D, and then texture the
synthetic shapes with Text2Tex [7]. Given a text prompt, the pipeline can generate high-quality and diverse textured meshes.

Figure 13. Gallery of chairs generated by our method.

Figure 14. Gallery of tables generated by GPLD3D.

Figure 15. Gallery of airplanes generated by our method.

Figure 16. Gallery of cars generated by GPLD3D.

Figure 17. Gallery of sofas generated by GPLD3D.

Figure 18. Gallery of lamps generated by GPLD3D.

