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A. Detailed dataset statistic
We describe the details of visual adaptation classification
tasks we used in Table 1 (FGVC) and Table 2 (VTAB-1k),
including the class number and the train/val/test sets. we
employ the split following VPT [13].

B. Detailed configuration
Table 3 summarizes the detailed configurations we used
for experiments. As mentioned in Section 4, we utilize
grid search to select hyper-parameters such as learning rate,
weight decay, batch size, and dropout rate, using the vali-
dation set of each task. AugReg [25] provides a robust ini-
tialization for the pre-training model with varying data aug-
mentation and regularization. Despite the need for small
initializations in many PEFT methods, RLRR maintains
consistent performance under different initializations, as
shown in Table 10.

C. Parameter size analysis
To showcase the parameter-efficiency of our RLRR
method, we compare its parameter size with other pop-
ular lightweight adaptation methods (Table 4), including
Adapter [9], VPT [13], LoRA [10], SSF [18] and ARC [5].
Adapter [9] uses two linear projections to construct a bot-
tleneck structure for each layer, resulting in the introduc-
tion of 2 · D · D′ · L learnable parameters, where D′ de-
notes the size of hidden dimension and L denotes the num-
ber of layers. Furthermore, due to the presence of non-
linear activations in Adapter, this structure does not al-
low for re-parameterization, which leads to additional com-
putational overhead in the inference. VPT [13] incorpo-
rates m prompts into input space, leading to an increase of
m ·D parameters for VPT-Shallow and m ·D · L for VPT-
Deep. In contrast to Adapter, both LoRA [10] and SSF [18]
employ linear adaptation methods without incorporating
non-linear functions. This design allows them to leverage
re-parameterization benefits, thereby mitigating additional
computations during inference. Specifically, the adaptation
matrix of LoRA, which consists of a down-projection and
an up-projection, introduces 2 · w ·D ·D′ · L learnable pa-
rameters, where w denotes the number of attention matrices
undergoing adaptation. SSF inserts linear scaling and shift-
ing coefficients after o operations, resulting in an addition
of 2 · o · D∗ · L extra parameters. D∗ denotes the dimen-
sion of weight matrix, where D∗ = 4 · D in up-projection
of FFN and D∗ = D in other cases. ARC offers addi-

tional parameter compression by sharing symmetric pro-
jection matrices across different layers. This approach in-
troduces D · D′ parameters for MHA and FFN. The low-
dimensional re-scaling coefficients and bias terms result in
a total of (D′ + D) · L additional parameters. The pro-
posed RLRR introduces dual-sided scaling tuning resulting
in 3 · o ·D∗ · L trainable parameters.

D. Experimental details on larger-scale and hi-
erarchical ViT backbones

Table 5, 6 and 7 respectively display the comprehensive re-
sults of the comparison conducted in Section 4 among ViT-
Large, ViT-Huge, and Swin-Base models.

E. Expanded experiments with self-supervised
pre-training

In addition to the models pre-trained with supervision, we
also conduct experiments with self-supervised pre-training
approaches: MAE [8] and Moco V3 [3]. Specifically, We
utilize MAE and Moco V3 self-supervised pre-trained ViT-
B as the backbone and evaluate the performance of our
RLRR on VTAB-1k. The results of MAE and Moco V3
self-supervised models are presented in Table 8 and Table 9,
respectively. Based on these results, it is noted that our pro-
posed RLRR continues to exhibit competitive performance
on two self-supervised ViT models.

F. Flexibility of RLRR
LoRA, as a universal fine-tuning paradigm, has achieved re-
markable performance across multiple tasks due to its flex-
ibility. In this section, we will elaborate on how our pro-
posed RLRR maintains the flexibility comparable to LoRA
while achieving superior performance. LoRA adjusts the
trainable parameter count by altering the sampling dimen-
sions of the bottleneck structure. Similarly, RLRR can
achieve the same adjustment. Initially, we remove the W
in fine-tuning items △W = s⃗left ⊙ W ⊙ s⃗⊤right, defining

this baseline as X(W+SleftSright)+ b⃗
⊤
+ f⃗

⊤
to simulate

the LoRA rank = 1 scenario.
After this, we can also introduce variations in the RLRR

variant by modifying the dimension r of the parameter scal-

ing in the expression X(W+(SleftSright)⊙W)+b⃗
⊤
+f⃗

⊤
,

where Sleft ∈ Rd×r and Sright ∈ Rr×d. Through this mod-
ification, we can derive adaptation matrices with varying
ranks to demonstrate the flexibility of adjustments similar



Table 1. Dataset statistics for FGVC. “*” denotes the train/val split of datasets following the dataset setting in VPT [13].

Dataset Description Classes Train size Val size Test size
CUB-200-2011 [29] Fine-grained bird species recognition 200 5,394* 600* 5,794
NABirds [27] Fine-grained bird species recognition 555 21,536* 2,393* 24,633
Oxford Flowers [22] Fine-grained flower species recognition 102 1,020 1,020 6,149
Stanford Dogs [15] Fine-grained dog species recognition 120 10,800* 1,200* 8,580
Stanford Cars [7] Fine-grained car classificatio 196 7,329* 815* 8,041

Table 2. Dataset statistics for VTAB-1k [32].

Dataset Description Classes Train size Val size Test size
CIFAR-100

Natural

100

800/1,000 200

10,000
Caltech101 102 6,084
DTD 47 1,880
Flowers102 102 6,149
Pets 37 3,669
SVHN 10 26,032
Sun397 397 21,750
Patch Camelyon

Specialized

2

800/1,000 200

32,768
EuroSAT 10 5,400
Resisc45 45 6,300
Retinopathy 5 42,670
Clevr/count

Structured

8

800/1,000 200

15,000
Clevr/distance 6 15,000
DMLab 6 22,735
KITTI/distance 4 711
dSprites/location 16 73,728
dSprites/orientation 16 73,728
SmallNORB/azimuth 18 12,150
SmallNORB/elevation 9 12,150

Table 3. The implementation details of configurations such as optimizer and hyper-parameters. We select the best hyper-parameters for
each download task via using grid search.

Optimizer AdamW
Learning Rate {0.2, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0001}
Weight Decay {0.05, 0.01, 0.005, 0.001, 0}
Dropout Rate {0, 0.1, 0.3, 0.5, 0.7}

Batch Size {256, 128, 32}
Learning Rate Schedule Cosine Decay

Training Epochs 100
Warmup Epochs 10

Table 4. Comparison of the additional parameter size in both fine-tuning and inference stages with other lightweight adaptation methods.

Stage
Method

Adapter [9] VPT-Shallow [13] VPT-Deep [13] LoRA [10] SSF [18] ARC [5] RLRR

Fine-Tuning 2 ·D ·D′ · L m ·D m ·D · L 2 · w ·D ·D′ · L 2 · o ·D∗ · L 2 · (D ·D′ + (D′ +D) · L) 3 · o ·D∗ · L
Inference 2 ·D ·D′ · L m ·D m ·D · L 0 0 0 0



Table 5. This table is extended from Table 4 in Section 4 and describes the detailed experimental results of the performance comparison on
VTAB-1k using ViT-Large pre-trained on ImageNet-21k as the backbone.

Methods
Datasets Natural Specialized Structed
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Full fine-tuning 68.6 84.3 58.6 96.3 86.5 87.5 41.4 74.7 82.6 95.9 82.4 74.2 83.8 55.4 55.0 42.2 74.2 56.8 43.0 28.5 29.7 48.1 65.4 303.4
Linear probing 72.2 86.4 63.6 97.4 85.8 38.1 52.5 70.9 76.9 87.3 66.6 45.4 69.1 28.2 28.0 34.7 54.0 10.6 14.2 14.6 21.9 25.8 51.5 0.05

Adapter [9] 75.3 84.2 54.5 97.4 84.3 31.3 52.9 68.6 75.8 85.1 63.4 69.5 73.5 35.4 34.1 30.8 47.1 30.4 23.4 10.8 19.8 29.0 52.9 2.38
Bias [31] 71.0 82.4 51.3 96.3 83.2 59.5 49.9 70.5 72.9 87.9 63.1 71.3 73.8 51.2 50.7 33.5 54.8 65.9 37.3 13.7 22.2 41.2 58.9 0.32

VPT-Shallow [13] 80.6 88.2 67.1 98.0 85.9 78.4 53.0 78.7 79.7 93.5 73.4 73.1 79.9 41.5 52.5 32.3 64.2 48.3 35.3 21.6 28.8 40.6 62.9 0.15
VPT-Deep [13] 84.1 88.9 70.8 98.8 90.0 89.0 55.9 82.5 82.5 96.6 82.6 73.9 83.9 63.7 60.7 46.1 75.7 83.7 47.4 18.9 36.9 54.1 70.8 0.49

LoRA [10] 75.8 89.8 73.6 99.1 90.8 83.2 57.5 81.4 86.0 95.0 83.4 75.5 85.0 78.1 60.5 46.7 81.6 76.7 51.3 28.0 35.4 57.3 72.0 0.74
ARC [5] 76.2 89.6 73.4 99.1 90.3 90.9 56.5 82.3 85.0 95.7 85.9 75.8 85.6 78.6 62.1 46.7 76.7 75.9 53.0 30.2 35.2 57.3 72.5 0.18
SSF [18] 73.5 91.3 70.0 99.3 91.3 90.6 57.5 81.9 85.9 94.9 85.5 74.4 85.2 80.6 60.0 53.3 80.0 77.6 54.0 31.8 35.0 59.0 73.0 0.60

RLRR 79.3 92.0 74.6 99.5 92.1 89.6 60.1 83.9 87.3 95.3 87.3 75.7 86.4 82.7 62.1 54.6 80.6 87.1 54.7 31.3 41.9 61.9 75.2 0.82

Table 6. This table is extended from Table 4 in Section 4 and describes the detailed experimental results of the performance comparison on
VTAB-1k using ViT-Huge pre-trained on ImageNet-21k as the backbone.

Methods
Datasets Natural Specialized Structed
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Full fine-tuning 58.7 86.5 55.0 96.5 79.7 87.5 32.5 70.9 83.1 95.5 81.9 73.8 83.6 47.6 53.9 37.8 69.9 53.8 48.6 30.2 25.8 46.0 63.1 630.90
Linear probing 64.3 83.6 65.2 96.2 83.5 39.8 43.0 67.9 78.0 90.5 73.9 73.4 79.0 25.6 24.5 34.8 59.0 9.5 15.6 17.4 22.8 26.1 52.7 0.06

Adapter [9] 69.4 84.4 62.7 97.2 84.2 33.6 45.3 68.1 77.3 86.6 70.8 71.1 76.4 28.6 27.5 29.2 55.2 10.0 15.2 11.9 18.6 24.5 51.5 5.78
Bias [31] 65.7 84.3 59.9 96.6 80.6 60.1 44.9 70.3 79.7 92.8 71.5 71.6 78.9 52.3 50.4 31.2 57.7 65.9 39.7 16.7 20.2 41.7 60.1 0.52

VPT-Shallow [13] 70.6 84.7 64.8 96.4 85.1 75.6 46.2 74.8 79.9 93.7 77.7 73.6 81.2 40.3 60.9 34.9 63.3 61.3 38.9 19.8 24.9 43.0 62.8 0.18
VPT-Deep [13] 76.9 87.2 66.8 97.5 84.8 85.5 46.5 77.9 81.6 96.3 82.5 72.8 83.3 50.4 61.2 43.9 76.6 79.5 50.1 24.7 31.5 52.2 68.2 0.96

LoRA [10] 63.0 89.4 68.1 98.0 87.0 85.2 48.7 77.1 82.2 94.3 83.1 74.2 83.5 68.6 65.0 44.8 76.4 70.8 48.8 30.4 38.3 55.4 69.3 1.21
ARC [5] 67.6 90.2 69.5 98.4 87.9 90.8 49.6 79.1 84.5 94.9 85.1 74.6 84.8 75.2 66.7 46.2 76.4 44.2 51.1 32.2 37.7 53.7 69.6 0.22
SSF [18] 66.6 91.2 69.0 98.4 88.1 88.9 50.7 79.0 85.0 94.1 79.3 73.9 83.1 73.9 61.2 47.9 76.2 82.8 51.9 25.5 33.7 56.6 70.4 0.97

RLRR 70.3 89.8 69.7 98.6 87.8 88.5 51.3 79.4 86.0 95.0 84.9 74.6 85.1 73.8 60.1 49.6 78.6 83.6 52.4 32.0 41.8 59.0 72.0 1.33

Table 7. This table is extended from Table 5 in Section 4 and describes the detailed experimental results of the performance comparison on
VTAB-1k using Swin-Base pre-trained on ImageNet-21k as the backbone.

Methods
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Full fine-tuning 72.2 88.0 71.4 98.3 89.5 89.4 45.1 79.1 86.6 96.9 87.7 73.6 86.2 75.7 59.8 54.6 78.6 79.4 53.6 34.6 40.9 59.7 72.4 86.9
Linear probing 61.4 90.2 74.8 95.5 90.2 46.9 55.8 73.5 81.5 90.1 82.1 69.4 80.8 39.1 35.9 40.1 65.0 20.3 26.0 14.3 27.6 33.5 58.2 0.05

MLP-4 [13] 54.9 87.4 71.4 99.5 89.1 39.7 52.5 70.6 80.5 90.9 76.8 74.4 80.7 60.9 38.8 40.2 66.5 9.4 21.1 14.5 28.8 31.2 57.7 4.04
Partial [13] 60.3 88.9 72.6 98.7 89.3 50.5 51.5 73.1 82.8 91.7 80.1 72.3 81.7 34.3 35.5 43.2 77.1 15.8 26.2 19.1 28.4 35.0 58.9 12.65
Bias [31] 73.1 86.8 65.7 97.7 87.5 56.4 52.3 74.2 80.4 91.6 76.1 72.5 80.1 47.3 48.5 34.7 66.3 57.6 36.2 17.2 31.6 42.4 62.1 0.25

VPT-Shallow [13] 78.0 91.3 77.2 99.4 90.4 68.4 54.3 79.9 80.1 93.9 83.0 72.7 82.5 40.8 43.9 34.1 63.2 28.4 44.5 21.5 26.3 37.8 62.9 0.05
VPT-Deep [13] 79.6 90.8 78.0 99.5 91.4 46.5 51.7 76.8 84.9 96.2 85.0 72.0 84.5 67.6 59.4 50.1 74.1 74.4 50.6 25.7 25.7 53.4 67.7 0.22

ARC [5] 62.5 90.0 71.9 99.2 87.8 90.7 51.1 79.0 89.1 95.8 84.5 77.0 86.6 75.4 57.4 53.4 83.1 91.7 55.2 31.6 31.8 59.9 72.6 0.27

RLRR 66.1 90.6 75.5 99.3 92.1 90.9 54.7 81.3 87.1 95.9 87.1 76.5 86.7 66.0 57.8 55.3 84.1 91.1 55.2 28.6 34.0 59.0 73.0 0.41

to LoRA. The results of above RLRR variants are shown in
Table 11, which validate our statement.

G. Transferability Analysis
We extend the RLRR variant to CNN by concatenating
CNN kernels. As shown in Fig. 3, by concatenating the
convolutional kernels, we transform original convolutional
kernel parameters in CNN to a two-dimensional parameter

matrix W′, allowing RLRR to seamlessly migrate to CNNs.
Based on this, we supplement the experiments on CIFAR-
100, as shown in Table 12, which demonstrates the trans-
ferability of our RLRR on other deep learning model. We
will explore applying our approach in future work under the
field of NLP. The outcomes of this variant are presented in
Table 12, underscoring the versatility of our design.



Table 8. Performance comparison on VTAB-1k using MAE self-supervised pre-trained ViT-Base as backbone.

Methods
Datasets Natural Specialized Structed
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Full fine tuning 24.6 84.2 56.9 72.7 74.4 86.6 15.8 59.3 81.8 94.0 72.3 70.6 79.7 67.0 59.8 45.2 75.3 72.5 47.5 30.2 33.0 53.8 61.3 85.80
Linear 8.7 41.5 20.6 19.2 11.3 22.3 8.6 18.9 76.5 68.6 16.6 53.2 53.7 33.6 32.5 23.0 51.1 13.0 9.9 8.5 17.9 23.7 28.2 0.04

Bias [31] 22.4 82.6 49.7 66.2 67.7 69.0 24.3 54.6 78.7 91.4 60.0 72.6 75.7 65.9 51.0 35.0 69.1 70.8 37.6 21.5 30.7 47.7 56.1 0.14
Adapter [9] 35.1 85.0 56.5 66.6 71.3 45.0 24.8 54.9 76.9 87.1 63.5 73.3 75.2 43.8 49.5 31.2 61.7 59.3 23.3 13.6 29.6 39.0 52.5 0.76

VPT-Shallow [13] 21.9 76.2 54.7 58.0 41.3 16.1 15.1 40.0 74.0 69.5 58.9 72.7 68.8 40.3 44.7 27.9 60.5 11.8 11.0 12.4 16.3 28.1 41.2 0.04
VPT-Deep [13] 8.2 55.2 58.0 39.3 45.2 19.4 21.9 35.3 77.9 91.0 45.4 73.6 72.0 39.0 40.9 30.6 53.9 21.0 12.1 11.0 14.9 27.9 39.9 0.06

LoRA [10] 31.8 88.4 59.9 81.7 85.3 90.3 23.7 65.9 84.2 92.5 76.2 75.4 82.1 85.9 64.1 49.4 82.8 83.9 51.8 34.6 41.3 61.7 67.5 0.30
ARC [5] 31.3 89.3 61.2 85.9 83.1 91.6 24.4 66.7 86.0 94.0 80.4 74.8 83.8 85.8 64.6 50.5 82.8 82.8 53.5 36.3 39.7 62.0 68.3 0.13
RLRR 33.6 88.9 62.2 87.3 86.7 89.1 25.7 67.6 86.0 93.4 81.3 75.1 84.0 77.0 65.5 53.4 84.7 78.5 54.5 37.2 43.1 61.7 68.6 0.33

Table 9. Performance comparison on VTAB-1k using Moco V3 self-supervised pre-trained ViT-Base as backbone.

Methods
Datasets Natural Specialized Structed
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Full fine tuning 57.6 91.0 64.6 91.5 79.9 89.8 29.1 72.0 85.1 96.4 83.1 74.3 84.7 55.1 56.9 44.7 77.9 63.8 49.0 31.5 36.9 52.0 66.2 85.69
Linear 62.9 85.1 68.8 87.0 85.8 41.8 40.9 67.5 80.3 93.6 77.9 72.6 81.1 42.3 34.8 36.4 59.2 10.1 22.7 12.6 24.7 30.3 54.7 0.04

Bias [31] 65.5 89.2 62.9 88.9 80.5 82.7 40.5 72.9 80.9 95.2 77.7 70.8 81.1 71.4 59.4 39.8 77.4 70.2 49.0 17.5 42.8 53.4 66.4 0.14
Adapter [9] 73.0 88.2 69.3 90.7 87.4 69.9 40.9 74.2 82.4 93.4 80.5 74.3 82.7 55.6 56.1 39.1 73.9 60.5 40.2 19.0 37.1 47.7 64.8 0.98

VPT-Shallow [13] 68.3 86.8 69.7 90.0 59.7 56.9 39.9 67.3 81.7 94.7 78.9 73.8 82.3 34.3 56.8 40.6 49.1 40.4 31.8 13.1 34.4 37.6 57.9 0.05
VPT-Deep [13] 70.1 88.3 65.9 88.4 85.6 57.8 35.7 70.3 83.1 93.9 81.2 74.0 83.0 48.5 55.8 37.2 64.6 52.3 26.5 19.4 34.8 42.4 61.2 0.05

LoRA [10] 58.8 90.8 66.0 91.8 88.1 87.6 40.6 74.8 86.4 95.3 83.4 75.5 85.1 83.0 64.6 51.3 81.9 83.2 47.5 32.4 47.3 61.4 71.3 0.30
ARC [5] 60.0 91.3 67.9 92.8 89.3 91.4 40.9 76.2 87.5 95.6 86.1 75.6 86.2 83.0 64.2 50.2 80.6 85.0 53.0 34.6 47.4 62.3 72.4 0.13
RLRR 61.8 91.7 68.6 91.6 89.5 91.5 41.7 76.6 87.9 96.0 85.4 75.4 86.2 79.3 64.6 51.5 81.4 77.5 50.4 35.6 45.9 62.1 73.1 0.33

Table 10. The impacts of initialization.

Initialization Natural (7) Specialized (4) Structed (8)

normal 82.9 85.4 61.4
zero 82.4 85.1 60.8

constant 81.6 84.2 60.9
uniform 82.5 85.6 61.4
RLRR 82.7 85.8 61.8

Table 11. Ablation study on VTAB-1k to compare with baseline.

Method Natural (7) Specialized (4) Structed (8) Params

w/o W 81.3 85.5 57.5 0.33
w/ W 82.7 85.8 61.8 0.33

LoRA (r=16) 80.4 85.2 61.0 0.63

Table 12. Performance comparison of RLRR extended to CNNs.

Methods
ResNet-18 ResNet-50

CIFAR-100 Params CIFAR-100 Params

Full fine-tuning 79.7 11.23 80.7 23.71
Linear probing 62.1 0.05 66.8 0.21

RLRR(r=1) 75.0 0.08 79.0 0.27
RLRR(r=10) 78.9 0.29 82.4 0.85

…

(out, in, k, k) in*k

out*k

Figure 3. Illustration of the RLRR method’s extension to CNN.

H. Combination of multiple RLRRs
RLRR can be likened to a LoRA with rank = 1. Con-
sequently, operations like element-wise combination and
arithmetic applied to LoRAs, as demonstrated in LCM-
LoRA[21], LoRAHub [11], and Composing PEMs[33], are
also applicable to PLRR. The various combinations of RL-
RRs within their respective frameworks can be expressed
in the form of ŜleftŜright =

∑N
i wiS

i
left

∑N
i wiS

i
right with

ˆ⃗
f⊤ =

∑N
i wif⃗

⊤
i , and ŜleftŜright =

∑N
i Si

leftS
i
right with

ˆ⃗
f⊤ =

∑N
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⊤
i .


