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This supplementary material contains:
• Quantitative evaluation and more visualized samples of

ReplicaPano dataset.
• Implementation details of both our method and compared

method, including training strategies, network architec-
ture, and parameter settings.

• More quantitative comparisons of 3D detection on all cat-
egories of iGibson-Synthetic [16] and ReplicaPano.

• More quantitative comparisons with other approaches on
3D detection and room layout estimation.

• More qualitative results on iGibson-Synthetic and Repli-
caPano.

.

1. ReplicaPano Dataset Samples

ReplicaPano is a new panoramic dataset that offers various
ground truths, including photo-realistic panorama, depth
maps, real-world 3D room layouts and 3D oriented object
bounding boxes, and object meshes (Fig. 1). The RGB
panoramic images and depth maps are all rendered from
real-scan [11]. As shown in Fig. 2, we hired three data anno-
tators and spent over 700 hours annotating the room layout
and oriented object bounding boxes through PanoAnnota-
tor [15] and labelCloud [9], respectively. To get a consistent
room layout among all panoramas of the same scene, the
annotation process for the room layout involves two steps:
First, we select several panoramas in different positions of
the same room and annotate each of them. We then fuse
and refine these labeled layouts to obtain the final room lay-
out. To ensure high-quality annotations, the object bound-
ing boxes of the same scene are annotated by two annotators
and verified by a third annotator. The object meshes are se-
lected manually, and then scaled and transformed to match
the scene mesh using Blender. We conducted quantitative
evaluations for the annotations of ReplicaPano (Tab. 3 and
Tab. 4). For room layout, we calculate the 2D-IoU between
the floor plan mask from the raw scene mesh and the la-
beled room layout. For object shape, we calculate the Par-
tial Chamfer Distance between the aligned CAD model and
the incomplete object mesh of the scene. In order to facili-
tate the community, we will release not only the dataset but
also the rendering codes.

2. Limitations

Although our method achieves state-of-the-art performance
on the panoramic scene understanding tasks, there are still

Loss Weight Term
Symbol Value Symbol Description
λp 1.0 Lpos Layout positional loss
λn 1.0 Lnorm Layout orientation loss
λe 0.1 Lsharp Layout sharpness loss
βsamp 0.2 Lsamp Object BBox sampling loss
βobjness 0.4 Lobjness Object BBox objectness loss
βcls 0.1 Lcls Object BBox classification loss
βcen 0.1 Lcen Object BBox center offset loss
βsize cls 0.1 Lsize cls Object BBox size classification loss
βsize off 0.06 Lsize off Object BBox size offset loss
βhead cls 0.1 Lhead cls Object BBox head classification loss
βhead off 0.04 Lhead off Object BBox head offset loss
βshape 1e-5 Lshape Object shape code loss
σl 1.0 Llayout Layout loss
σo 1.0 Lobject Object loss
σp 0.5 Lphysic Physical violation loss

Table 1. Joint training losses and their corresponding weights.

limitations in our model. Our method fails to robustly de-
tect objects with thin structures, such chair, table, and floor-
lamp. It could be because these objects have sparse points
on the thin structure and may be occluded by other objects,
making it difficult for the model to accurately detect them.
Another limitation is that there are some objects have incon-
sistencies between mesh and image contents in the Repli-
caPano dataset. Additionally, the dataset volume is smaller
than other popular 3D scene datasets such as MP3D [1] and
ScanNet [3]. We are making effort to expand the real-world
data and refine the object meshes to address these problems.
For the ONet representation, although the compact repre-
sentation makes it efficient for inference, it may not be able
to recover very fine-grained structure. We believe that in-
creasing the shape code dimension and training it on a more
diverse set of object datasets could improve its generaliza-
tion performance and enable it to handle a wider range of
objects.

3. Implementation Details

3.1. Training strategy of PanoContext-Former

For monocular depth estimation, Unifuse [4] is finetuned on
iGibson-Synthetic and ReplicaPano using the weights pre-
trained on Matterport3D [1], the batch size is 6 and learning
rate is 1e-4 for 100 epochs. For 3D autoencoder, ONet [6]
is finetuned from the weights pretrained on ShapeNet [2],



Figure 1. Samples of ReplicaPano. In the top row, there are photo-realistic panoramas rendered from Replica. The second row shows the
2D bounding box of each object. The 3D oriented bounding boxes of objects are shown in the third row. The fourth and fifth rows contain
each room’s layout and the high-fidelity depth image. The bottom row demonstrates the gravity-aligned scene meshes and the ground truth
of full scene reconstruction.

Figure 2. ReplicaPano annotation example. We use Panoanotator [15] for layout annotation (left) and lableCloud [9] for oriented bounding
box annotation (right).

Method Params
Depth

Estimation
Object

Reconstruction
Other

Module Total

DeepPanoContex 132.08M - 1.85s
5.06s

(ODN,LEN,GCN,RO) 6.91s

Ours 88.35M 0.08s 0.11s
0.32s

(ODN,LEN,CM,PP) 0.51s

Table 2. The inference time and parameters comparison on V100.

Corners 4 corners 6 corners 8 corners 10+ corners odd corners overall
2D-IoU 98.44 97.40 97.69 96.58 97.22 97.47

Table 3. Quantitative evaluation of the room layout annotation.

with batch size of 64 and learning rate of 1e-4 for 300000
iterations. We train ODN and LEN jointly from scratch



Cat. cabinet door chair curtain lamp rug sofa table trash tv
CD 0.15 0.028 0.23 0.33 0.039 0.019 0.26 0.15 0.042 0.034

Table 4. Quantitative evaluation of object shape annotation. The
Partial Chamfer Distance (from the incomplete object mesh to the
CAD model) scaled with the factor of 102.

by the AdamW optimizer (β1 =0.9, β2 =0.999) with batch
size of 4 for 400 epochs. In ODN module, the input is
50K points with data augmentation including random flip
and panoramic horizontal rotation. The initial learning
rates of ODN, LEN, and context module are set to 0.004,
0.0001, and 0.0002, respectively, followed by the cosine
decay schedule. The loss weights and their corresponding
descriptions in joint learning are shown in Tab. 1.

3.2. Network Architecture of PanoContext-Former

For ODN module, we follow [5] to use PointNet++ as the
backbone network. There are four set abstraction layers and
two feature propagation layers in the backbone. For each set
abstraction layer, the input point cloud is sub-sampled to
2048, 1024, 512, and 256 points with the increasing recep-
tive radius of 0.2, 0.4, 0.8, and 1.2, respectively. And the
two feature propagation layers up-sample the point cloud
features to 512 and 1024. Then we generate 256 initial ob-
ject proposals from point cloud features. For LEN mod-
ule, we employ ResNet-18 to encode image features from
panorama following [7]. In addition, we extracted features
from perspective views and fused them with panoramic fea-
tures by E2P-based feature fusion. The fused features are
fed into the first GCN block which is composed of 6 GCN
layers followed by a linear layer and returns 642 vertex off-
sets of a tessellated sphere. As described in our paper, all
the above features with their position embeddings are con-
catenated together and act as input to the transformer-based
context module. On each transformer encoder layer, we ap-
ply the object head and shape head to estimate the oriented
3D bounding box and shape of each object, and ensemble
the result of each layer. The two heads share two layers
of multi-layer perception and have an independent linear
layer separately. The refined layout features and the associ-
ated vertices are subdivided, then fed into the layout head to
generate the final layout which has 2562 vertices and 5120
faces. We compare the running time and model complexity
with DeepPaonContext [16] in Tab. 2.

3.3. Network Details of the Compared Methods

3D Object Detection: For DeepPanoContext-3D, we first
get the point cloud of the object based on the 2D detec-
tion and depth estimation results; then the point cloud is
downsampled to 1024 and fed into PointNet++ encoding
geometry features of dimension 1024; finally, these fea-
tures are concatenated with appearance features and rela-

tional features for object bounding box estimation. For
Group-Free [5], we use the official implementation with the
50k points as input and choose the best parameters setting
for comparison. For DeepPanoContext, Im3D-Pano, and
Total3D-Pano, we use the results reported on [16].
3D Room Layout Estimation: We train HorizonNet [12],
HoHoNet [13], Led2-Net [14], Deep3DLayout [7], and
DOPNet [10] from the source code provided by each author
with the default parameter settings.

4. 3D detection Results on All Categories
In Tab. 7 and Tab. 8, we show all-category results on
iGibson-Synthetic and ReplicaPano respectively. Our
method outperforms other baselines on most categories and
the average mAP, which is consistent with the conclusion
drawn in the main paper.

5. Comparison with Other Methods
According to Tab. 5 and Tab. 6, which compare recent
works that focus on room layout estimation and 3D object
detection, our approach still outperforms these works.

Method chair soft table fridge sink door
floor
lamp

bottom
cabinet

top
cabinet

sofa
chair dryer mAP↑

TR3D 35.81 90.47 59.2 83.80 95.38 92.28 53.99 40.6 73.08 69.86 10.77 64.11
Ours 38.47 98.15 66.61 82.77 89.55 87.49 40.31 59.53 80.71 83.42 13.83 67.35

Table 5. 3D detection comparison with TR3D [8] on iGibson.

Method 2D-IoU ↑ 3D-IoU ↑
DOPNet [10] 90.96 90.63
Ours 92.24 92.04

Table 6. Layout estimation compared with DOPNet on iGibson.

6. More Qualitative Results
We also show more qualitative results of our method on
iGibson-Synthetic (Fig. 3) and ReplicaPano (Fig. 4). The
full scene reconstruction results illustrate that our method is
capable to generate not only accurate 3D object bounding
boxes and poses but also room layout and object meshes
with good visual quality.
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Table 8. 3D object detection performance per category on ReplicaPano dataset, evaluated with mAP@0.15 IoU.



Figure 3. Qualitative comparisons on 3D object detection and scene reconstruction on iGibson-Synthetic. In the left two columns, we
compare our object detection results with DeepPanoContext (DPC), DeepPanoContext with point cloud (DPC-3D), and ground truth in the
panoramic view and bird’s eye view. The color of the bounding boxes represents their categories. The third column shows the results of
scene reconstruction, with two magnified object reconstruction results presented on the right-hand side.



Figure 4. Qualitative comparisons on 3D object detection and scene reconstruction on ReplicaPano. The description of the figure is
consistent with that of Fig. 3
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