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Abstract

In this supplementary material, we commence by giving
detailed comparisons of distillation types and experimen-
tal configurations (Appendices A and B). Furthermore, we
provide more details about our Dual-branch Adversarially
Robust knoWledge dlstillatioN (DARWIN) in Appendix C,
including adversarially robust teacher models, our exten-
sion with label-free adversary generation, and how we con-
duct the black-box model extraction into a student model by
the use of a dataset disjoint with the teacher pre-training
dataset. Theoretical analysis is provided in Appendix D. We
also present hyper-parameter analyses (Appendix E) and vi-
sualization results (Appendix F).

A. Types of Distillation
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Figure 5. Zoom on figures (from Fig. 1) illustrating the differ-
ence between different distillation types. Fig. 5a shows that the
vanilla distillation does not use adversarial generation. Fig. 5b
shows that the standard adversarially robust distillation uses only
the natural sample and its adversarial counterpart. Fig. Sc shows
that our DARWIN also uses intermediate adversarial samples col-
lected from intermediate steps along the “adversarial path”.

In this section, we provide more explanations about
vanilla knowledge distillation, standard adversarially robust
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knowledge distillation, and our proposed novel framework,
which uses intermediate iterative adversarial samples from
multi-step generation. Figure 5 shows the key difference
between all three types.

Vanilla knowledge distillation. The teacher model in the
context of vanilla distillation is naturally pre-trained using
standard methods without specific emphasis on adversarial
robustness. Moreover, vanilla knowledge distillation incor-
porates only clean samples into the knowledge distillation.
Thus, such a distillation paradigm transfers knowledge for
clean samples instead of the adversarially robust knowledge
from the teacher model (Fig. 5a).

Adversarially robust knowledge distillation. Achiev-
ing high adversarial robustness usually requires high net-
work capacity, restricting its applicability to large models.
To endow lightweight models with adversarial robustness,
standard adversarially robust knowledge distillation trans-
fers the robust behavior from an adversarially pre-trained
teacher model based on adversarial samples by distilling the
clean samples and their adversarial counterparts (Fig. 5b).

DARWIN: our adversarially robust knowledge distil-
lation with intermediate adversarial samples. DAR-
WIN builds upon the concept of adversarially robust knowl-
edge distillation by leveraging the intermediate steps of
the adversary generation process. This process is com-
monly based on an iterative gradient ascent that enlarges
the task-related loss to disrupt the target network, as shown
in Eq. (2). There exist a dozen intermediate products dur-
ing such an adversary generation process, which represent
a path crossing the decision boundary (Fig. 5c). Exist-
ing works primarily resort to two endpoints of adversary
generation for distillation: clean samples and their corre-
sponding (final) adversarial samples, overlooking interme-
diate adversarial samples that also “contain” information
about the decision boundary. In this paper, we efficiently
incorporate these intermediate adversarial samples into the
robust knowledge distillation process with no additional



cost. Moreover, instead of using only untargeted adversar-
ial generation (path towards the nearest decision boundary
in Eq. (2)) for robustness transfer, we further incorporate
targeted adversary generation (path towards the nearest de-
cision boundary in Eq. (6)) as auxiliary supervision to more
effectively capture the structure of decision boundaries of
the robust teacher model. Moreover, we also ascertain the
importance of intermediate adversarial samples to re-weight
their impact on distillation.

B. Experimental Setup

Below, we provide our experimental configurations, includ-
ing detailed descriptions of the datasets utilized for the ad-
versarially robust knowledge distillation and the implemen-
tation details of DARWIN.

B.1. Datasets

Following the evaluation criteria on RobustBench [65],
we conduct all the robust knowledge transfer experiments
on four standard datasets: CIFAR-10, CIFAR-100 [73],
ImageNet-100, and TinyImageNet [78]. The CIFAR-10
dataset contains 60,000 color images of 32 x 32 resolu-
tion across 10 classes. CIFAR-100 shares the same setting
as CIFAR-10 except that it contains 100 classes with 600
images per class. Both the ImageNet-100 and Tinylma-
geNet datasets are subsets of the standard ImageNet dataset
for evaluating the robustness transfer on real-world data.
ImageNet-100 contains 130,000 color images of 100 classes
from the original dataset. TinylmageNet is a downsized ver-
sion of ImageNet that contains 100,000 images over 200
categories, each at a low resolution of 64 x 64 pixels. For
robust knowledge distillation with extra data (Table 4), we
additionally include 1M synthetic examples generated by
the Denoising Diffusion Probabilistic Model (DDPM) [72]
for CIFAR-10/100 following the setting of [66, 76, 77].

B.2. Implementation Details

Following the default experimental settings of robust
knowledge distillation methods [70, 87, 88] and also Ro-
bustBench [65], we utilize network architectures includ-
ing ResNet-18/34 [71], MobileNetV2 (MNV2) [79], Wide-
ResNet-28-10/34-10 (WRN-28/34) [85] as both teacher
and student models. In addition to conventional Convo-
lutional Neural Networks (CNNs), we incorporate Vision
Transformers (ViTs) [68, 83] for teacher models to con-
duct adversarially robust knowledge distillation. We pri-
marily focus on two knowledge transfer paradigms in our
experiments: distillation from large-scale models and self-
distillation. The former involves robust knowledge transfer
from a large-scale adversarially pre-trained teacher model
to a relatively lightweight student model. On the con-
trary, self-distillation means that both the teacher and stu-
dent models share the same network architecture.

For network parameter optimization during robust
knowledge distillation, we adopt the Stochastic Gradient
Descent (SGD) optimizer with a momentum factor of 0.9,
a weight decay factor of 5 x 1074, and a cyclic learning
rate schedule [82] with a maximum learning rate of 0.1.
Weighting hyper-parameters 3 and ~y are set to 4.0 and 0.5
in Eq. (3) and Eq. (5). We choose loss weighting factors
A1 = 1.0 and Ay = 0.5 for all the experiments. The mar-
gin factor m in Eq. (9) is set to 0.1. For adversarial ro-
bustness, we primarily focus on the ¢,,-norm threat model
with the maximum perturbation radius € = 8/255 unless
stated otherwise. During robust distillation, we adopt the
PGD method [74] with n = 10 iteration steps (step size
a = 2/255) to generate adversarial examples. When con-
ducting adversary generation based on class labels, we op-
timize the Cross-Entropy (CE) loss associated with predic-
tions of the student model. For label-free adversary gen-
eration, we leverage the predictions of the teacher model
in lieu of ground-truth labels, specifically optimizing the
Kullback-Leibler (KL) divergence of predictions between
teacher and student models. Further details of our label-
free adversary generation strategy are provided in subse-
quent sections. For a fair and comprehensive assessment,
we conduct all robustness evaluations based on the adaptive
attack principle. All the experiments are conducted based
on a single NVIDIA Tesla A100.

C. Details of DARWIN

Below, we provide more details of DARWIN, including the
training paradigms of robust pre-trained teacher models, the
extension of our method with the label-free adversary gen-
eration, and the black-box model extraction.

C.1. Adversarially Robust Teacher Models

For CNN architectures, we typically obtain the adversari-
ally robust teacher models by one of the most effective ad-
versarial training methods, TRADES [86], which employs
the KL divergence for prediction alignment between clean
samples and their adversarial counterparts. The objective
function of TRADES can be defined as below:

r%in E(x’y)wp [ﬁcE(fGt (x),y)+
¢ (I7)

w max Lxi(fe, (x)[|fo,(x+ )|,
161l <e

where w > 0 is a trade-off between clean performance and
adversarial robustness. Following the setting of TRADES
[86], we set w = 6.0 for the adversarial training of all the
CNN-based teacher models in this paper.

For ViT architectures, we adopt the Projected Gradient
Descent (PGD) adversarial training approach [74] with at-
tention random dropping and perturbation random masking



[75] to obtain robust teacher models. These techniques in-
volve dropping gradients from selected attention blocks in
ViTs or randomly masking perturbations on certain patches
of the input image during the adversarial training process.
Specifically, we employ ViT-Base [68] and DeiT-Small [83]
architectures to construct our robust teacher models for ro-
bust knowledge distillation.

C.2. Label-free DARWIN

We have elaborated upon untargeted and targeted adver-
sary generation strategies based on class labels (CE loss)
in Eq. (2) and Eq. (6), respectively. Nevertheless, their
reliance on ground-truth labels can hinder their applicabil-
ity in certain scenarios. In addition to DARWIN based on
class labels, we propose a label-free extension of DAR-
WIN in Eq. (11) and Eq. (12), which requires no ground-
truth labels during adversarial generation. Consistent with
the adversary generation with labels, we randomly initialize
untargeted and targeted adversarial examples %0, %/(0) ~
x + 0.001 - N(0,I) and conduct an n-step optimization in-
volving a series of intermediate samples Z = {%("}7}
that are also adversarial towards the student model.

To achieve label-free adversarial generation, we can
sample images from ‘“approximately” different classes
based on class predictions of the well-optimized teacher
model. Such a label-free sampling strategy is applicable to
our dual-branch adversary mechanism. Specifically, instead
of directly choosing samples based on their semantic labels,
we investigate a series of heuristic sampling strategies based
on the generated pseudo-labels of input samples, including
clustering, negative sampling, and confidence thresholding.
We provide details of these sampling strategies below.

Clustering. Deep clustering generally combines DNNs
with traditional clustering techniques to organize unlabeled
data into meaningful groups [80]. Here, we apply cluster-
ing techniques, e.g., k-means and DBSCAN [69], on fea-
ture embeddings of clean samples extracted by the teacher
model. We can thus assign a pseudo-label for each sam-
ple based on the cluster to which it belongs. The rest of
the algorithm proceeds as normal, except that the generated
pseudo-labels are used in place of class labels.

Negative sampling. Negative sampling aims at identify-
ing instances that are distinct from a given reference. For a
given reference sample x, we can examine the top-k class
prediction scores of a randomly sampled instance x’ with
top-k class prediction scores of sample x. If the top-k prob-
abilities of the sampled instance x’ align with top-k prob-
abilities of x, this instance is discarded, and random sam-
pling is repeated until one finds an instance with unaligned
top-k probability scores.

Confidence thresholding. For C classes, the chance that
i.i.d. sampled x and x’ share the same category is 1/C?.

Table 9. Comparison of label-free strategies for robust knowledge
distillation from WRN-34 to ResNet-18 on CIFAR-10.

Strategy Natural PGD  AA
Label-based sampling 84.48 55.07 5224
Random sampling 83.74 5459 51.86

Clustering 84.09 54.65 5198

Negative sampling (top-1)  84.35  55.02 52.33
Negative sampling (top-2)  84.30 54.79 52.08
Confidence thresholding 84.12 5487 52.19

However, rather than blindly accepting random sampling,
one may use a confidence threshold h, e.g., setas h = 1/C.
This threshold acts as a measurement between the refer-
ence sample x and a randomly sampled instance x’. Subse-
quently, we can qualify the distinction between them based
on some distance, e.g., || fo,(X) — fo,(X')|l1. If the eval-
uated distance is less than our predefined threshold h, this
randomly sampled instance x’ is excluded, and the sampling
procedure is repeated until we find a suitable x’.

Table 9 provides the evaluation of the aforementioned
label-free strategies in comparison to our label-based ap-
proach. As one can see, the label-free strategies achieve
comparable or even better performance than the label-based
DARWIN under Auto-Attack evaluation.

C.3. Black-box model extraction via DARWIN

Given that the label domain of the distilling dataset does not
align with the knowledge encapsulated in the teacher model
(pre-trained on a different dataset), we resort to label-free
adversarial generation and negative sampling to facilitate
our DARWIN in the black-box extraction setting. Com-
pared with existing label-free robust distillation methods,
we additionally incorporate intermediate adversarial sam-
ples into the robust knowledge transfer. The integration of
intermediate adversarial samples helps explore the decision
boundaries of the teacher, thereby enhancing the robustness
of the student against unforeseen adversarial samples.

D. Theoretical Analysis
D.1. Proof of Theorem 2

Proof. 1t follows from the expansion below:

Rrob (DUZs) — Ryob(D) = Roop(DUZFULY ) = Rrob(D) (18)
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D.2. Proof of Theorem 3

Proof. For R,op(DUZ) > R.0b(D) to hold, we require that
(1) 7—\J'rob (I)g() *Rrob(D) > 0& (11) 7zrob (Iq'/) *Rrob (D) > 0.

Point (i) follows directly from Definition 1 of the natu-
ral and robust risks. Specifically, we have R,.op(fo,; Z¥) =
Rnat(fes ; Ig) =1=> ,R'rob(fe8 ; D) > Rnat(fes ; D) For
example, Rpq¢(fo.;Z%) = 1 as all samples of Z% are mis-
classified by Definition3, and Rpay(fe.;Z%) = 0 as the
boundary risk requires correctly classified samples, contra-
dicting Definition 3 of Z%. O

Point (i) evaluates R, op(Z7) — Rrop(D). Tt is easy
to observe that Rpqy(ZY) > 0 and R,qt(Z7) = 0, where
the latter point follows from Definition 1 of the natural
risk and Definition 3 of I;,/ (correctly classified samples
have the natural risk equal zero). The boundary risk gain
Thdy = Rody (Z7) —Rpay (D) >0 according to Proposition 1.

Then it remains to conclude that point (ii) holds if 734, >
Rnat (D)

D.3. Proof of Theorem 1
Proof. The following inequality follows directly from the
definition of the Lipschitz smoothness and g := fg, and

fo.— fo,, i.e., the student network converges to the teacher
network:

16, (6, %) [(fo. ()~ (fo. (7)),

=% o % — %[0 <k @D
l9(x) =9 ()| _
SozopL <6 @

where k = k’. Moreover, the locality follows from the fact
that for each x we have a finite subset {&(i)}?:_ll where
a <|x—%®||, <e. The chain of inequalities in Eq. (14)
follows from the above bounds. O]

D.4. Relation of the Boundary Risk to the Distance
between Sample and the Decision Boundary

Madry et al. [74] observed that introducing adversarial
samples increases the robust risk, which can be used in de-
vising adversarially robust networks. Let d(x, Bg) be the
distance between an input sample x and the closest point
from it to a decision boundary By of the classifier fo(-). Xu
et al. [84] observed that adversarial examples tend to lie
closer to the decision boundary compared with their clean
samples [84]. Although it is challenging to directly quantify
the exact distance of a sample from the decision boundary in
high-dimensional spaces, the higher value of the loss (e.g.,
Cross-entropy or KL divergence) implies closer proximity
to the decision boundary if the decision boundary corre-
sponds to regions of high uncertainty (rapid change in pre-
dicted probabilities). Thus, for X € T/ and its corresponding
clean sample x € D, we can assume d(X, Bg, ) < d(x, Bs,)

if X is obtained by translating x towards the decision bound-
ary by a sufficiently small e. Then the following inequality
holds Eﬁel’{ [d(%,Bog,)] < Exepld(x,Bg,)].

If d(x, Bg, ) is large, x is far from the decision boundary,
and the chance that its e-perturbation will cause a misclassi-
fication is low. Thus, the chance p(Ruqy(fo,; {(x,y})=1)
is low. Conversely, if d(x, By, ) is small, perturbing x by € is
more likely to make it cross the decision boundary, causing
misclassification. The chance p(Reay (fo.; {(x,y)}) =1)
becomes high. Therefore, we can form an inverse relation-
ship between the boundary risk and the distance to the de-
cision boundary and define its soft variant (7> 1):

€

R o0 = (i) -

€

25 | (e gm0 ) Jeo

where Bg_(x) is the nearest boundary for sample x. It
holds that Ry (fa,; V) =lim, o0 Ry, (fe,; V) and that

Riay (fo.;: {(x,9)}) €[0,1].

Proposition 1. As Egcz/[d(X,Bg,)] < Exepld(x, Be. )],
we obtain Ry, (fo.; I ) > Roay(fo.: IY) > Ruay(fo,: D).

Rgdy (fgg ) V) :

Proposition 1 means that correctly classified intermedi-
ate adversarial samples have a higher boundary risk than
their clean samples.

E. Hyper-parameter Analysis
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Figure 6. Hyper-parameter sensitivity of DARWIN on natural
and (Auto-Attack) robust accuracies on CIFAR-10 when distill-
ing from large-scale models. We report the hyper-parameters ad-
justment of § in Fig. 6a and « in Fig. 6b. The tuning for loss
weighting factors A\; and A2 are in Fig. 6¢ and 6d, respectively.



To improve the understanding of DARWIN, we analyze
the impact of hyper-parameters on the performance. Fig-
ure 6 shows both natural and adversarially robust accuracies
w.r.t. hyper-parameters of DARWIN on CIFAR-10.

Figure 6 shows that the hyper-parameter 3 is respon-
sible for a trade-off between the natural performance and
adversarial robustness of the student model during adver-
sarially robust knowledge distillation. The robust accuracy
increases when we enlarge (3, whereas the natural perfor-
mance drops. Conversely, the natural accuracy improves
when we lower (3, along with the degradation of robust-
ness. Moreover, v = 0.5 seems optimal when determin-
ing weights in Eq. (5). In addition, appropriately choosing
the loss weighting factors A; and Ao for adversarially ro-
bust knowledge distillation leads to better performance on
natural samples and their adversarial counterparts.

F. Visualization

TRADES
(Teacher)

DARWIN
(Student)

RSLAD
(Student)

IAD
(Student)

Figure 7. Saliency visualization (SmoothGrad) of adversarial sam-
ples. Student models are based on ResNet-18, which are distilled
from the teacher model using WRN-34 (trained by TRADES).

In addition to attention visualizations presented in the
main manuscript, we have also incorporated saliency visu-
alizations on the CIFAR-10 dataset, as shown in Fig. 7. The
saliency maps are obtained via the SmoothGrad [81] tech-
nique, which smoothens raw gradients of the class score
function over the input space. All the adversarial samples
are generated via the PGD method with the maximum per-
turbation radius ¢ = 8/255. To ensure a fair comparison,
we utilize adaptive adversarial generation to generate a cor-
responding adversarial counterpart for each natural sample
across teacher and student models.

We can observe that the saliency maps of the robust stu-
dent model, derived using our DARWIN method, exhibit
greater overlap with the teacher model’s saliency maps than
with those obtained by other adversarially robust knowl-
edge distillation techniques. This alignment suggests that
our DARWIN method effectively captures and transfers ro-

bust knowledge from the teacher model. Furthermore, these
saliency regions predominantly converge on the discrimina-
tive parts of the target objects, indicating that the distilled
robustness also aligns well with the human vision. Such
findings further corroborate the resilience of our distilled
models against unforeseen adversarial examples.

G. Additional Analyses

Table 10. Comparison of the robust accuracy (%) between our

DARWIN (distillation approach) (WRN-34—ResNet-18) and ad-

versarial training approaches using ResNet-18 on CIFAR-10.
CIFAR-10 CIFAR-100

Natural PGD  AA  Natural PGD  AA

PGD-AT [27]  83.80 51.40 47.68 5739 2836 23.18
TRADES [55] 8245 5221 4890 5637 28.68 23.78
MART [49] 8220 5394 48.04 54778 2879 2458

DARWIN 8448 55.07 5224 59.12 3230 27.26

Method

Comparisons between the robust distillation and adver-
sarial training approaches. In the main text, we primar-
ily compare our method with previous adversarially robust
knowledge distillation approaches. Thus, below, we study
a simple baseline for adversarial robustness, i.e., adversar-
ial training, for a comprehensive understanding of our pro-
posed method. Table 10 compares our DARWIN (WRN-
34—ResNet-18) with adversarial approaches on ResNet-
18. We report the classification accuracy on both clean and
adversarial samples. The robust accuracy of DARWIN is
~5% better.

Table 11. Comparison of the robust accuracy (%) (WRN-
34—ResNet-18) of our DARWIN given diverse weighting strate-
gies on CIFAR-10/100.

CIFAR-10 CIFAR-100
Natural PGD AA  Natural PGD AA

Uniform Weighting (no weights) 8332 53.84 5092 57.81 3095 2570

First Term switched on (y=0) 84.13 5418 51.58 5853 3144 2620
Second Term switched on (y=1) 83.85 5445 51.82 58.16 31.82 2647
Both Terms switched on (y=0.5) 84.48 55.07 52.24 59.12 3230 27.26

Weighting Strategies

Weighting for intermediate samples. Below, we provide
further explanations of the weighting mechanism presented
in Eq. (5). The first term, (1 —+)i/n, is a prior emphasiz-
ing intermediate adversaries of later steps ¢. The second
term concentrates on the prediction discrepancy for a local
mini-batch. Note the « in Figure 6b controls the trade-off
between these two terms: v = 0 does not mean that the
weighting is off. As shown in Table 11, the uniform weight-
ing for all the intermediate samples leads to a ~1.5% drop
in both natural performance and adversarial robustness.

Impact of “early” vs. “late” intermediate samples. The
repulsion term operates between targeted and untargeted
branches in DBKD, whose original classes differ. Thus,
predictions of samples from two different classes are pushed
away, leading to better separable decision regions. Note that



Table 12. Robustness (%) (WRN-34—ResNet-18) of our DAR-
WIN with diverse intermediate adversaries on CIFAR-10/100.

Used Intermediate Adversaries CIFAR-10 CIFAR-100
of Different Iterations Natural PGD  AA  Natral PGD AA
1-5 (early steps) 84.56 5398 50.85 58.98 31.02 25.57
6-10 (later steps) 83.11 5494 51.73 57.03 31.86 26.73
1-10 (our default setup) 8448 55.07 5224 59.12 3230 27.26

the student’s features for intermediate adversaries of early
steps (e.g., i =1, 2, 3) are relatively close to features of the
clean sample. Thus, repelling them from a clean sample of
different classes also boosts natural accuracy (see Table 12).

Table 13. Black-box robustness results (%) (WRN-34—ResNet-
18) of our DARWIN on CIFAR-10.

ResNet-18 MNV2
Method
FGSM PGD MIM FGSM PGD MIM
IAD 67.47 66.19 6579 6733 65.80 65.15
RSLAD 67.59 66.06 6571 67.12 6545 65.03
DARWIN (Ours) 69.22 67.14 66.80 68.97 6698 66.56

Black-box robustness evaluation. In addition to the evalu-
ation against white-box attacks, we also provide black-box
robustness evaluations below to simulate a more realistic
defense scenario. By using the teacher model (WRN-34)
as the substitute model, we show our black-box robust-
ness against transferable adversaries on CIFAR-10 (see Ta-
ble 13). Note that MIM denotes the momentum iterative
method [67]. Compared to other methods, our DARWIN
enjoys better black-box robustness results under iterative
and non-iterative attacks.
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