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1. More about Color Spike Camera

1.1. Camera Details
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Figure 1. The color spike camera we used in the experiments to

capture real-world Bayer-pattern spike stream.

In our experiments, we use a color spike camera (CSC)

to capture some real-world Bayer-pattern (RGGB) spike

streams for evaluation, with a sensor frequency of 20000Hz.

The illustration of the CSC is shown in Fig. 1. Accord-

ing to the sensor manufacturer, the spatial resolution is

1000×1000. The pixel size is 17µm × 17µm. The data

output speed is 500MHz. The threshold voltage of firing is

0.9V, with the reset time of 200ns. Besides, we employ a

50mm 1:1.8D lens for the data capturing.

1.2. Compared with Other Cameras

Conventional digital cameras usually use a certain time

window for exposure to accumulate photoelectric signals

and compact them into a snapshot, with pixels of the sensor

working synchronously. In contrast, CSC with ultra-high

temporal resolution is a neuromorphic vision sensor that

mimics the structure of human vision, the pixels of which

work independently and asynchronously. When the accu-

mulated signals reach a predetermined threshold θ, the pixel

triggers a flag indicating firing a spike. Compared to most

conventional cameras, CSC accumulates photons and fires

spikes continuously to record dynamic scenes, resulting in a

binary Bayer-pattern spike stream instead of a RAW image.

Event camera [1, 8–12] is also a kind of neuromorphic

camera with high temporal resolution. Different from CSC

which captures absolute light intensity via an “integrate-

and-fire” mechanism, the event camera records relative light

intensity changes. To be specific, event cameras are de-

signed to generate event signals only when light intensity

changes exceed a certain threshold. As a result, event cam-

eras are sensitive to dynamic areas of the recorded scene.

Another sensor called Quanta Image Sensor (QIS) [2–

6] is developed to discern individual photons through spa-

tial and temporal oversampling. Benefiting from its single-

photon sensitivity, the sensor has proven to be promising for

applications in low-light conditions. Though with a sim-

ilar data form (i.e., binary data), the working mechanism

and design motivation of QIS are different from CSC. In

particular, the signal “1” or “0” for CSC means whether

the amount of accumulated photoelectric signals exceeded

a certain threshold. For QIS, it indicates the presence or ab-

sence of photons. In addition, QIS achieves single-photon

sensing by minimizing readout noise for low-light imaging,

while CSC is designed for high-speed imaging under nor-

mal illumination conditions.

2. More Method Details

2.1. ConvBlock and ResBlock
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Figure 2. Illustration of the “ConvBlock” and “ResBlock”.

In the structure of our proposed CSCSR network, there

are some “ConvBlock”s and “ResBlock”s. The former in-

dicates a convolution layer followed by a ReLU activation

function, while the latter refers to the residual block in [7].

The structures of the two blocks are shown in Fig. 2.

2.2. Operation Details
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Figure 3. Illustration of the operations in our method. (a) The

“split” operation. (b) The “reverse” operation.

In the figure of the overall architecture of our network,

there are two operations, “split” and “reverse”. We’ll in-

troduce details of the two operations as shown in Fig. 3.

The “split” operation is to split out the spike sequence of

each color channel from the Bayer-pattern spike stream, re-

sulting in 4 downsampled spike sequences with a shape of
H
2
× W

2
. To implement the operation, we can first multi-

ply the binary {Si}
n
i=1 by each color mask and use a 2×2



MaxPooling layer with stride 2 for downsampling. The “re-

verse” operation is to prepare the sequences for the motion

estimation from time point j to i. To estimate optical flows,

Spike2Flow needs two clips centered with the beginning

and end time points as shown in Fig. 3 (b). To be specific,

we can directly estimate the optical flow w
k
j , while we need

to reverse the sequences for another optical flow w
i
j .

2.3. Channels for Joint Motion Estimation

To represent the Bayer-pattern spike stream clip, we split

out three color channels R, G and B in the BSSR mod-

ule. However, we split out four channels R, G1, G2 and B

for joint motion estimation. As green pixels are denser, we

jointly encode the two green channels for better use of color

consistency in the BSSR module. For joint motion estima-

tion, we need to extract each channel with the same spatial

resolution and without missing pixels as shown in Fig. 3 (a)

to meet the input requirements of the single-channel optical

flow estimation method Spike2Flow [14]. Thus, we extract

four channels from the Bayer-pattern spike stream clip.

2.4. Method Summary

To better introduce the pipeline of our proposed CSCSR

method, we summarize it in Algorithm 1.

Algorithm 1: Color spike camera super-resolution

Input: A clip of the LR spike stream {Si}
N
i=1

Output: A HR color image

1 Represent the input Bayer-pattern spike stream clip

{Si}
N
i=1, resulting in the features of each color

channel, ΩR, ΩG and Ω
B ;

2 Jointly estimate motion from {Si}
N
i=1, producing

the optical flows wj,i and wj,k from the middle

time point to the first and the last time points;

3 Get temporal-pixel features T̂R, T̂G and T̂
B from

the encoded features ΩR, ΩG and Ω
B , guided by

the estimated optical flows wj,i and wj,k;

4 Integrate the features of each color channel T̂R, T̂G

and T̂
B to reconstruct the HR color image.

3. Parameter Settings

3.1. Number of Input Spike Frames

As studied in [15], the reconstruction performance con-

verges when the number of input spike frames N is suf-

ficiently large. More frames bring greater computational

complexity but little performance improvement, so they set

it to 41 according to the ablation studies. Besides, the num-

ber of input spike frames is also set to 41 in a represen-

tative learning-based spike camera reconstruction method

Stride Length PSNR ↑ SSIM ↑ Time ↓
3 33.34dB 0.9116 2.032s

5 33.34dB 0.9109 1.973s

7 33.35dB 0.9121 1.903s

9 33.38dB 0.9117 1.794s

11 33.38dB 0.9120 1.722s

1 13 33.37dB 0.9123 1.662s

15 33.39dB 0.9123 1.600s

17 33.36dB 0.9126 1.548s

19 33.34dB 0.9123 1.456s

21 33.35dB 0.9117 1.420s

23 33.33dB 0.9116 1.325s

5 33.34dB 0.9105 1.086s

3 11 33.39dB 0.9121 1.032s

17 33.34dB 0.9118 0.977s

9 5 32.95dB 0.9046 0.842s

Table 1. Ablation studies of sliding window length w and stride s

on the REDS-based evaluation dataset.

Spk2ImgNet [13]. As a result, we also set the number of

input spike frames to 41 in our method.

3.2. Length and Stride of Sliding Window
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Figure 4. Optical flows estimated from the middle time point to

the end time point and the beginning time point.

The middle time point corresponds to the 21st spike

frame. According to the setting of the motion estimation

method [14], the number of spike frames for each time

point is 21, and the interval between time points should

be a multiple of 3. To estimate the motion from the mid-

dle time point to the last time point, the right boundary of

the last time point farthest from the middle time point is

21+3× 3+10 = 40 < N = 41. Similarly, the left bound-

ary of the first time point farthest from the middle time point

is 21 − 3 × 3 − 10 = 2 > 1. Therefore, the index of the

last time point and the first time point is 30 and 12 as shown

in Fig. 4. For the following temporal pixel search, we need

to cover the first, middle and last time points in the BSSR

module. The channel number of encoded features as well as

the number of time points N ′ in BSSR can be obtained by

N
′

=
N − w + s

s
, (1)



where N ∈ Z
+ denotes the number of spike frames, w

(w = 2k + 1, k ∈ Z
+) and s ∈ Z

+ denotes the length

and stride of the temporal sliding window. To meet the re-

quirements of covering the three time points and N ′ ∈ Z
+,

we get s ∈ {1, 3, 9}. Then we have three settings: {s =
1, w = 2k + 1 ≤ 23, k ∈ Z

+}, {s = 3, w ∈ {5, 11, 17}},
and {s = 9, w = 5}. To investigate the settings, we per-

form ablation studies on the parameters as shown in Table

1. According to the results, most cases share similar perfor-

mance, which shows the stability of our network. In partic-

ular, there is a noticeable performance drop in the last case

with w = 5 and s = 9. This is due to some frames being

skipped when the stride s is larger than the length w. Fi-

nally, we set the window length w and stride s to 11 and 3,

considering the balance of performance and running time.

4. Appendix of Experiments

4.1. Simulator Summary

Besides the figure of our CSC simulator in the paper, we

also summarize the pipeline in Algorithm 2 for a bet-

ter introduction. The input of the simulator consists of

a sequence of video frames, spike firing threshold, super-

resolution scale and pattern of CFA (e.g., RGGB). The out-

put is a LR Bayer-pattern spike stream-HR color image pair.

The codes of the simulator will be publicly available.

4.2. Computational Complexity

To better compare the methods, we perform the comparison

of computational complexity on the REDS-based evalua-

tion dataset in Table 2. With competitive running time, our

method achieves the best performance.

Method Parameters ↓ Time ↓ PSNR ↑
TFI+TSCNN 1.45M 1.244s 29.24dB

TFP+TSCNN 1.45M 1.181s 27.43dB

TFI+Real-RawVSR 4.48M 0.363s 31.03dB

TFP+Real-RawVSR 4.48M 0.496s 30.81dB

3DRI+SwinIR 11.75M 20.928s 31.13dB

3DRI+BasicVSR 6.29M 16.781s 31.60dB

VidarSR 10.16M 4.612s 30.81dB

VidarSR∗ 10.16M 13.820s 30.27dB

SpikeSR-Net 2.64M 2.4265 32.38dB

SpikeSR-Net∗ 2.64M 10.043s 29.66dB

CSCSR (ours) 5.40M 1.032s 33.39dB

Table 2. Computation complexity comparison on the REDS-based

evaluation dataset, including the comparison of trainable parame-

ter number, running time and PSNR performance.

4.3. Assembled Motion Estimation

In our ablation study, we replace our joint motion estimation

strategy with an assembled motion estimation. To better in-

Algorithm 2: Color spike camera simulator

Input: A sequence of video frames, spike firing

threshold θ, super-resolution scale s and

pattern of color filter array

Output: A clip of LR Bayer-pattern spike stream

{Si}
N
i=1 and corresponding HR image H

1 Generate N latent intensity frames from the input

video frames by a frame interpolation method;

2 for i← 1 to N do

3 Accumulate signals from the corresponding

color channel of the i-th latent intensity frame

Ii according to the CFA pattern and scale s,

resulting in the accumulated signals Ai;

4 for each pixel (x, y) do

5 if Ai(x, y) ≥ θ then

6 Si(x, y) = 1; // Fire a spike

7 Ai(x, y) = 0; // Reset

8 else

9 Si(x, y) = 0; // Fire no spike

10 end

11 end

12 if i = N+1

2
then

13 H = Ii; // Set the latent

intensity frame of the

middle time point as the

ground truth HR image

14 end

15 end

troduce the strategy in Case (E), we present the illustration

in Fig. 5. To be specific, we first split out spike sequences

of each channel due to the input requirements of the single-

channel optical flow estimation method [14]. After the inde-

pendent motion estimation of each sequence, we assemble

the optical flows wR
j,i, w

G1

j,i , wG2

j,i and w
B
j,i to wj,i accord-

ing to the color layout as shown in Fig. 5. Similarly, we

obtain wj,k by the assembly of wR
j,k, wG1

j,k , wG2

j,k and w
B
j,k.
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Figure 5. Illustration of the assembled motion estimation strategy

in Case (E) of our Ablation Study.

4.4. More Visual Results

To further demonstrate the performance of our proposed

CSCSR method, we supplement more visual comparison re-
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Figure 6. Visual comparison results of color spike camera super-resolution (×4). Please enlarge the figure for better comparison.
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Figure 7. Visual comparison results of color spike camera super-resolution (×4). Please enlarge the figure for better comparison.

sults as shown in the following figures. Compared to other

methods, our CSCSR network produces HR color images

with better details and visual quality. Please enlarge the fig-

ures for better visual comparison.
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Figure 13. Visual comparison results of color spike camera super-resolution (×4). Please enlarge the figure for better comparison.
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Figure 14. Visual comparison results of color spike camera super-resolution (×4). Please enlarge the figure for better comparison.
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