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1. Extended analysis of caption-based VLMs
This section broadens the scope of our analysis of the lo-

calisation abilities of caption-based Vision-Language Mod-
els (VLMs) from the main paper. Our goal is to assess a
wider range of prompts on more sample images. The study
employs the same collection of VLMs as before, namely:

• GPT-4V [10]

• 7B version of BLIP-2 [8]

• 9B version of Flamingo [1, 2]

• Fromage [7]

Note that due to the undisclosed training data for
GPT-4V [10], we cannot rule out its exposure to supervised
object localisation training. Our expanded analysis includes
three prompt types, designed to test the VLMs’ abilities
in various aspects of spatial understanding and object lo-
calisation. The prompts cover a spectrum of challenges,
from generating bounding boxes around a specified object
(shown in Fig. 2) to performing grid-based localisation (il-
lustrated in Fig. 3) and determining relative positions (de-
picted in Fig. 4).
Generate bounding box Similar to the study in the main
paper, we evaluate caption-based VLMs in their ability to
generate a bounding box for the specified object. For this
purpose, we applied the prompt from the main paper to
more sample images, which are depicted at the top of Fig-
ure 2. Our observations indicate that only GPT-4V is ca-
pable of generating a bounding box that is approximately
located near the object of interest, yet not with high preci-
sion; for example, the cat in Figure 2D. In contrast, all other
VLMs, such as OpenFlamingo as shown in Figure 2B, com-
plete the sentence with ’in the image,’ without providing
any bounding box informatiom. To further evaluate these
VLMs, we added more detailed instructions to the prompt,
such as ‘in the format of [xmin, ymin, xmax, ymax]’, which can
be found in Figure 2E-H. We observe that even with more
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instructions, these VLMs are not able to provide any bound-
ing box or positional information about the inquired object.

Grid-based localisation In this part, we evaluate the
VLMs with a grid-based localisation task using two differ-
ent grid styles. The first style uses a standard numbered grid
(Fig. 3A-D), while the second uses a chessboard-style grid
(Fig. 3E-H). In both cases, an 8x8 grid is overlaid on the im-
ages. The size of each grid cell varies to match the aspect
ratio of the image. The goal is to evaluate the VLMs’ abil-
ity to pinpoint the object location using the designated grid.
We observe that only GPT4-V is able to list grid cells in its
response, yet, for the numbered grid its response does not
match the objects (e.g. the dog in Fig. 3B), and for it only
roughly matches the object (e.g. the cat in Fig. 3H). The
other models generally fail to provide accurate or relevant
coordinates in response to the grid-based prompts. Their
responses are often off-task, with Flamingo providing un-
related continuations (such as ’cells [. . . ] of the brain’),
Fromage repeating the prompt, and BLIP-2 sometimes not
responding at all. This indicates a gap in these models’ abil-
ity to understand and execute spatial tasks.

Relative position Here, we evaluate the VLMs’ relative
position abilities. For that, we task the models to identify
an object relative to a center object (Fig. 4A-D). Therefore,
we designed an artificial image with a pizza at the center,
surrounded by a lemon to the left, a shark to the bottom, a
cow to the right, and a dog above. We observe that BLIP-2
listed three random objects, regardless of the prompt. Fro-
mage detects the objects to the left correctly Fig. 4A, yet,
all other directions are wrong. OpenFlamingo responses
are only about the pizza ignoring the surrounding objects.
GPT-4V does answers correctly for all directions except for
the one above the pizza Fig. 4B. We extend our study to ask
VLMs how a specific object is placed relative to a red cir-
cle that is overlaid on the image (Fig. 4E-H). This is inspired
by [11] which showed that red circles can be used for VLMs
to direct their attention to a specific region. We observe that
Fromage and BLIP-2 are not able to provide any meaning-
ful responses. Instead, often these VLMs try to describe the



Figure 1. Visualization of pair-wise similarities of the raw sinusoidal embedding, the CLIP encoder’s spatial embeddings and our learned
PIN. Our embedding captures local positional information, making it effective for localisation.

absolute position of the object e.g.for Fromage Fig. 4C and
BLIP-2 Fig. 4B. OpenFlamingo answers give indeed rela-
tive positional information, yet, most often wrong and in 3
of 4 cases ‘on the left side’. Again, only GPT4-V is able
to give roughly correct responses e.g. Fig. 4D, yet, Fig. 4A
and C are partially and Fig. 4B is completely wrong. From
that, we conclude that caption-based VLMs struggle with
solving relative positional tasks indicating a lack of spatial
understanding on the relative placement of objects.
Summary The extended analysis of caption-based VLMs
reveals limitations in their spatial understanding and object
localisation abilities. Among all evaluated models, only
GPT-4V managed to generate responses that partially met
the task criteria. Yet, due to the undisclosed training data
for GPT-4V [10], we cannot rule out its exposure to super-
vised object localisation training. Despite varying prompt
complexities and image scenarios, all other VLMs consis-
tently underperform in tasks requiring precise localisation
and relative positioning. The study’s findings underscore
a gap in the current capabilities of caption-based VLMs,
highlighting their struggles with accurately interpreting and
responding to spatially-oriented tasks. This motivated us to
design the PIN module to unlock localisation abilities in the
caption-based VLM Flamingo.

2. Additional ablations

Amount of objects to paste. Lastly, we evaluate the max-
imum number of objects, denoted as amax, that are pasted
onto the background for each image. Separate models are
trained for 1, 2, 3, 4, and 5 allowed objects per image. The
results are shown in Tab. 1 and the mIoU on the COCO
dataset is reported for a maximum of 3, 4, and 5 objects
per image. We observe a decrease in performance when too
few objects are pasted during training (mIoU≤3 of 0.24 vs.

# pasted objects mIoU≤3 mIoU≤4 mIoU≤5

≤ 2 0.24 0.21 0.19
≤ 3 0.35 0.31 0.29
≤ 4 0.35 0.30 0.28
≤ 5 0.34 0.30 0.27

Table 1. Ablation on the number of objects being pasted during
training on our synthetic data evaluated on COCO. Pasting with
1-3 objects works best across all mIoU scores.

0.35) as the VLM only focuses on the most salient object.
Alternatively, pasting too many objects also decreases per-
formance, especially for mIoU≤5. With amax=3 we strike a
good balance between these two extremes, yielding the best
accuracies across all mIoU values.

Visualizing π In Fig. 1, we present a visualization of our
learned input-independent feature vector π from the PIN
module. Following ViT [5], we compute the cosine sim-
ilarity for all pairings of the 16×16 patches. This results
in a 16×16 grid visualization, where each cell shows the
similarity between a specific patch with all other patches.
For readability, we omitted every second patch, thus being
a 8×8 plot. We also visualize the 1D sinusoidal embedding
as it is the starting point for our PIN module. From Fig. 1,
we find that this embedding only obtains the highest similar-
ities with itself and among patches in the same row, a char-
acteristic feature of the sinusoidal embeddings. Conversely,
our learned embedding π demonstrates high similarity pri-
marily within itself and its immediate neighboring patches,
an attribute advantageous for localisation tasks, highlight-
ing the similarity among the spatial locations. We also vi-
sualize the similarity for the raw CLIP vision encoder em-
beddings by averaging the similarities over 50 images. We
observe that the embedding of the vision encoder does not
contain any positional information as only one bright spot,



# layers in ψ S embedding mIoU mIoUM mIoUL

(a) 1 sinusoidal 0.34 0.25 0.57
(b) 2 sinusoidal 0.35 0.26 0.59
(c) 3 sinusoidal 0.33 0.24 0.56

(d) 2 sinusoidal 0.35 0.26 0.59
(e) 2 learned 0.35 0.27 0.59

Table 2. Ablation on the number of layers in ψ and the type of positional embedding S used in PIN evaluated on COCO. The best
performance is obtained with only 2 layers in ψ and sinusoidal vs learned positional embeddings for S leads to the same results.

the similarity with itself, can be found in each cell. In sum-
mary, our visualizations show that our learned embedding π
successfully captures local positional information, making
it particularly effective for tasks like localisation.

2.1. Depth of ψ

In this ablation, we analyse the impact of varying the
number of layers in the feed-forward neural network ψ in-
side the PIN module. Table 2 (a) - (c) displays the results.
Increasing the layer quantity results in a rise in parameters,
advancing from 0.6M for one layer to 1.2M for two layers,
and reaching 2.3M for three layers. We find that the opti-
mal number of layers in ψ is 2, as evidenced by the highest
mIoU scores across all categories. The findings indicate that
a few learnable parameters are sufficient, aligning with the
input-agnostic characteristics of the PIN module.

2.2. Sinusoidal vs learned

We investigate the effectiveness of the sinusoidal embed-
ding [3] and compare it against a learned variant. As shown
in Table 2 (d) - (e), both types of embeddings yield similar
performance, with no significant difference in mIoU scores.
Our goal is to incorporate spatial information into the VLM,
for which the sinusoidal embedding is ideally suited. Its
performance matches that of the learned version, which in
theory provides greater adaptability and capacity for the
model. Thus, the sinusoidal embedding with no learnable
parameters is the optimal choice for our PIN module due to
its efficiency and effectiveness in this context.

2.3. Choice of background

We ablate the choice of background images for our syn-
thetic data generation. To this end, we compare the BG-
20k [9] by using plain white background images on COCO
in Tab. 3 rows (a-b). We observe a strong performance de-
crease in terms of IoU with white backgrounds, especially
for medium-sized bounding boxes. We conjecture that the
more realistic images in BG-20k contribute to a more robust
spatial embedding π, enhancing localisation performance.

Background omax mIoU mIoUM mIoUL

(a) White 0.5 0.24 0.12 0.48
(b) BG-20k [9] 0.5 0.35 0.26 0.59

(c) BG-20k [9] 0.0 0.33 0.26 0.56
(d) BG-20k [9] 0.5 0.35 0.26 0.59

Table 3. Ablation on choice of background image and overlap be-
tween objects (omax) on COCO. Realistic background images and
allowing for overlap between the pasted objects improves locali-
sation performance.

2.4. Overlap between objects

Lastly, we evaluate the effect of allowing for overlap
omax between pasted objects during training on our synthetic
generated data on COCO. We compare two settings of no-
overlap omax=0.5 in Tab. 3, rows (c-d). We find that by
creating more realistic generations by allowing for overlap-
ping pasted objects, we obtain slightly better localisation
performance, indicating a better learned PIN module.

3. Additional qualitative results
3.1. Visualization on RefCOCO

In Fig 5, we show zero-shot visual grounding results
on RefCOCO of PIN with the OpenFlamingo VLM. The
adapted VLM struggles with more complex scenarios(B and
C), yet, it effectively handles simpler cases (F, G, H, J).

3.2. Visualization of PIN with BLIP-2

In Fig. 6, we visualize results when applying to the
BLIP-2 VLM on 224×224, BLIP-2 (224), image resolu-
tion and 364×364, BLIP-2 (364), for PVOC [4]. The PIN
trained with the higher image resolution BLIP-2 version is
able to predict more accurate bounding boxes.

3.3. Visualizations on LVIS

Our adapted VLM demonstrates effective object local-
isation also on LVIS [6] as demonstrated in Fig. 7. Our
model can localise multiple objects within a single image,
as illustrated in Fig. 7A, D, E, and I. It also effectively iden-
tifies objects in unusual settings, such as a teddy bear in a



tree (Fig. 7J) and a remote under a cat (Fig. 7H). These ex-
amples support the conclusion that our model extends its
zero-shot capabilities to the task of object localisation.

3.4. Zero-shot visualizations on synthetic data

In Fig. 8, we demonstrate the zero-shot localisation ca-
pabilities of our VLM on our synthetic generated data. This
visualization showcases the model’s ability to accurately
identify and localise multiple objects within an image, even
in scenarios where pixel boundaries are not distinctly de-
fined.

3.5. Visualizations of failure cases

We visualize typical failure cases of our model in Fig. 9.
As discussed in the limitation section, our model cannot ef-
fectively localise multiple instances from the same object
due to our simplistic training procedure. We found that the
model typically handles those cases by drawing a bounding
box around all instances from the same class which can be
seen in Fig. 9A-E. As we keep the original input resolution
of the OpenFlamingo [2] VLM of 224, our model struggles
to localise these objects with a tight bounding box (Fig. 9F-
I) since the object spans only across a few pixels.

4. Limitations.
Owing to our simplistic training procedure and the

caption-based pretraining focusing on big objects in rel-
atively low-resolution images, our model struggles with
generating tight bounding boxes, especially around smaller
objects. Moreover, the PIN-enhanced VLM is trained to
output a bounding box regardless if the object inquired is
present in the image or not, limiting its use case as a gen-
eral object detector. As a no-bells-and-whistles paper, we
leave these challenges to future work.

5. Additional implementation details
Our synthetic training and validation datasets are created

from 1,116 object categories, based on LVIS, with overall
56,064 images generated by Stable Diffusion. These cate-
gories exclude those of COCO and PVOC to enable mea-
suring truly zero-shot localisation performance. A different
set of 81 categories (which includes the COCO and PVOC
classes), amounting to 4,296 images, is reserved for zero-
shot evaluation. The dataset averages 50.43 ± 12.11 im-
ages per object category. For pasting objects onto the back-
ground images, we find dividing the images into grids of
16×16 worked best for OpenFlamingo, 14×14 for BLIP-
2, aligning with the shapes of the vision embedding. Thus,
the network only needs to predict numbers between 0 and
224 in steps of the grid size, simplifying the task at hand.
This also leads to bounding boxes not being perfectly pre-
cise around the inquired object, though, it has better per-

formance than the model trained on a grid size matching
image size. For RefCOCO, we extend our synthetic dataset
with positional referral expressions. For that, we increase
the likelihood of sampling the same object type to 0.7. We
still randomly select one of the pasted objects for training,
yet, when sampling an object for which its object type oc-
curs multiple times in the image, we add a positional refer-
ral to it. These are computed by measuring the axes with
the highest difference between the center points of the ob-
jects. Then, we extend the prompt with e.g. ’left person’, or
’person on left’ for left, right, top, and bottom.



Figure 2. Analysis of localisation abilities of caption-based VLMs to provide a bounding box. A-D shows results with the same prompt on
different sample images and E-H illustrates prompts with more instruction information on the same cat and dog image (D).



Figure 3. Analysis of grid-based localisation of caption-based VLMs. A-D shows results with a numbered grid overlaid on the image.
while E-H shows findings with a checkerboard-style grid.



Figure 4. Analysis of relative position abilities of caption-based VLMs. In A-D, VLMs have to identify the object relative to the center
one. In E-H, VLMs are tasked to provide the location relative to a red circle.



Figure 5. Zero-shot visual grounding results on RefCOCO [12] of PIN with the OpenFlamingo [2] VLM. The adapted VLM struggles with
more complex scenarios(B and C), yet, it effectively handles simpler cases (F, G, H, J).

Figure 6. Object localisation results with BLIP-2 [8] on 224×224, BLIP-2 (224), image resolution and 364×364, BLIP-2 (364), on
PVOC [4]. The PIN trained with the higher image resolution BLIP-2 version is able to predict more accurate bounding boxes.



Figure 7. Object localisation results on LVIS [6] with the OpenFlamingo VLM.

Figure 8. Zero-shot object localisation results on our synthetic data with the OpenFlamingo VLM.



Figure 9. Typical failure cases: Due to the minimalistic design of our method, the PIN enhanced VLM cannot localise multiple instances
of the same class (A-E). Often the VLM draws a bounding box around all objects of the same instance. Additionally, keeping the original
input resolution of 224 from the VLM limits our ability to effectively manage very small objects (D-I).
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