
Differentiable Micro-Mesh Construction
Supplemental Material

Yishun Dou2 Zhong Zheng2 Qiaoqiao Jin1 Rui Shi1 Yuhan Li1 Bingbing Ni1,2

1Shanghai Jiao Tong University, Shanghai 200240, China 2 Huawei
yishun.dou@gmail.com nibingbing@sjtu.edu.cn

1. Additional Methodology Details
Update Rule for Displacements. The scalar-valued dis-
placement follows the similar update rule as the vector-
valued offset. We first rewrite the Eq.(8) (main text) by
applying chain rule:

Dℓ ← Dℓ − η2
∂Dℓ

∂Dℓ

∂Vℓ

∂Dℓ

∂Φ
∂Vℓ

, (1)

where ∂Dℓ/∂Dℓ = (I + λ2L
ℓ)−1 is the Jacobian of dis-

placements Dℓ as a function of the reparameterization Dℓ
.

We can then derive the following update rule for original
parameters Dℓ:

Dℓ ← (I+ λ2L
ℓ)−1(Dℓ − η2

∂Dℓ

∂Dℓ

∂Vℓ

∂Dℓ

∂Φ
∂Vℓ

)

= Dℓ − η2(I+ λ2L
ℓ)−2 ∂Vℓ

∂Dℓ

∂Φ
∂Vℓ

. (2)

Quasi-Newton Optimization. The update rules in Eq. (2)
and Eq.10 (main text) are analogous to the Newton’s opti-
mization, which is consistent with the common practice of
applying second-order optimization on Laplacian represen-
tation in geometry processing [1, 2, 6, 10–12]. Our µ-mesh
construction is developed along the research line of conven-
tional geometry optimization.

Adaptive Level of Detail. With the visual-guided subdi-
vision stopping criterion SubdivisionCriterion(·) that mea-
sures the visual improvement bring from a finer level, adap-
tive level of detail (LOD) can be achieved with further one-
ring neighborhood lookup. Given a µ-mesh M, we intro-
duce L ∈ NNF to maintain the levels of base triangles in
M, which is determined by the adaptive LOD algorithm.
We provide two choices to achieve adaptive LOD.

In-Optimization adaptive LOD, as shown in Algo-
rithm 1. There is no limit to the subdivision before level
ℓmin. Starting from ℓmin, a base triangle is continue subdi-
vided from level ℓ to ℓ + 1 when (i) no adjacent triangle
terminates subdivision at previous level ℓ − 1, and (ii) the

µ-mesh Base mesh

Adap. LOD PSNR↑ Volume↓ Geom. Err.↓ Iso.↑ Time↓ Storage↓
In-Optim. CD 44.78 0.085 1.81 0.747 6.3m 3.43MB
In-Optim. 44.89 0.083 1.80 0.747 4.8m 3.12MB
Post 44.92 0.084 1.80 0.748 6.8m 3.17MB

(a) Ablation studies on adaptive level of detail. In-Optim.(CD) in table
denotes replacing the visual-guided subdivision stopping criterion with
Chamfer Distance.

µ-mesh Base mesh

Smoothing Strategy PSNR↑ Volume↓ Geom. Err.↓ Iso.↑
None 35.41 0.142 2.42 0.619
Laplacian Smoothing (0.1) 38.61 0.101 1.95 0.729
Laplacian Smoothing (1.0) 42.25 0.087 1.85 0.740
Laplacian Smoothing (10) 41.24 0.079 1.86 0.752
Reparameterization 44.89 0.083 1.80 0.747

(b) Ablation studies on smoothing strategies. An oversmoothed µ-mesh,
produced by Laplacian smoothing with large loss weight, can have small
shell volume.

µ-mesh Base mesh

λ1 λ2 PSNR↑ Volume↓ Geom. Err.↓ Iso.↑
9 9 44.85 0.084 1.84 0.744
19 9 44.89 0.083 1.80 0.747
19 19 44.81 0.085 1.80 0.747
49 19 44.79 0.089 1.86 0.749

(c) Ablation studies on λ1 and λ2 in reparameterization.

µ-mesh Base mesh

Training View Number PSNR↑ Volume↓ Geom. Err.↓ Iso.↑ Time↓
16 44.67 0.082 1.83 0.747 4.2m
24 44.89 0.083 1.80 0.747 4.8m
32 45.01 0.083 1.79 0.748 5.6m
40 44.99 0.082 1.80 0.748 6.8m

(d) Ablation studies on training view number. We compute rendering
losses for all views at each training iteration.

Table 1. More studies on adaptive level of detail, smoothing
strategies, hyperparameter in reparameterization, and train-
ing view numbers. These ablation studies are experimented on
the extreme subset. The underlined values denote the default con-
figurations used in our experiments. (Geom. Err. ×10−5)

gains from current level is greater than a small acceptance
number. This algorithm is called before each subdivision.

1



ALGORITHM 1: In-Optimization Adaptive LOD
Input: µ-meshM (to be subdivided), base triangle levels

L ∈ NNF , current level ℓ, minimum level ℓmin.
Output: Base triangle levels L.

if ℓ < ℓmin then
for each base triangle f in µ-meshM do

L[f]← ℓ+ 1
end

end
return L

τ ← 0.1 (a small acceptance number)
for each base triangle f in µ-meshM do

if L[f] == ℓ and
L[OneRingNeighborhood(f)] ≥ ℓ and
SubdivisionCriterion (M, ℓ, f) > τ

then
L[f]← ℓ+ 1

end
end
return L

Post-Process adaptive LOD, as shown in Algorithm 2. This
algorithm is called once within a post-processing after op-
timization. Similarly, a base triangle at level ℓ rolls back
to ℓ− 1 when (i) no adjacent triangle terminates rollback at
level ℓ+1, and (ii) the gains from current level is negligible,
i.e. less than a small tolerance number. Note that the logi-
cal differences between these two algorithms are inevitable.
The first algorithm, for example, determines a subdivision
to level ℓ + 1 depending on the previous two levels ℓ and
ℓ − 1, because of the µ-mesh at level ℓ + 1 is not available
for now. Instead, all levels of rendering errors are available
for the second one. We demonstrate the comparison among
these two choices in Tab. 1a.

2. Additional Implementation Details
Camera Settings. We first scale normalize and center the
meshes to fit in sphere of radius 1 centered at (0, 0, 0). In
order to arrange the cameras such that they evenly surround
the mesh, a Fibonacci sphere [3] is chosen to determine the
camera origin. Figure 1 demonstrates a Fibonacci sphere
with hundreds points number (for the sense of a sphere). As
an immediate benefit, the sensor number, the sphere radius,
the fov and so on can be easily configured. Specifically,
we experiment with the following configurations: (i) radius
is 3.5, (ii) cameras look at (0, 0, 0), and (iii) the look up
direction is determined by first finding the sphere tangent
plane and then finding the direction on this plane with the
largest z-axis component. The influence of the training view
number is shown in Tab. 1d. In practice, we find 24 views
are sufficient for the models in our database.

Textures. For the µ-mesh with aggressive decimation rate,

ALGORITHM 2: Post-Process Adaptive LOD
Input: µ-meshM with uniform subdivision, base

triangle levels L ∈ NNF , maximum level ℓmax,
minimum level ℓmin.

Output: Base triangle levels L.

ℓ← ℓmax

τ ← 0.03 (a small tolerance number)
for each base triangle f in µ-meshM do

if SubdivisionCriterion (M, ℓ, f) < τ then
L[f]← ℓ− 1

end
end
ℓ← ℓ− 1
while ℓ > ℓmin do

for each base face f in µ-meshM do
if L[f] == ℓ and

L[OneRingNeighborhood(f)] <= ℓ and
SubdivisionCriterion (M, ℓ, f) < τ

then
L[f]← ℓ− 1

end
end
ℓ← ℓ− 1

end
return L

Figure 1. Cameras are arranged on a Fibonacci sphere surface.
A Fibonacci sphere can evenly arrange any number of points on a
sphere surface.

the base mesh has a large geometric difference from the
high-polygon mesh. The UV coordinates can be finetuned
after our µ-mesh construction, which can also be formulated
within a differentiable rendering framework based on exist-
ing works on UV optimization [4, 5]. Instead of jointly opti-
mizing the geometry and UV coordinates (or texture map),
we choose to tackle these two problems separately, based
on the consideration of the intractably ill-posed nature of
inverse rendering.



ReferenceAfter OptimizationBase Mesh Initialization

2.35(Geom. Err.),  0.66(Isotropy) 1.94,  0.79

2.17,  0.68

2.18,  0.68

2.02,  0.82

1.79,  0.80

Figure 2. Comparison of the base mesh at initialization and after optimization. The base mesh of a µ-mesh is optimized together with
displacements baking. (Geom. Err. ×10−5)

Laplacian Smooth ReferenceReparameterization (Ours)

distortion
oversmooth

33.25(PSNR),  0.0833(Shell Volume) 36.67,  0.0861

Figure 3. Comparison of Laplacian smoothing and Reparameterization.

Smaller Displacements. In µ-mesh compression, the dis-
placement at level ℓ acts as a signed correction for the in-
terpolated displacement at level ℓ− 1, namely, hierarchical
delta compression [9]. This design enables lower bitrate
compression for displacements at higher levels. During op-
timization, we still use the actual displacements instead of
the hierarchical delta compression format, for the compat-
ibility with our variance-based shell volume minimization
objective Lsv . The compression format can be easily ob-

tained when saving µ-mesh to disk. Minimizing the Lsv

is also promising in producing smaller displacement cor-
rections (in compression format), which in turn reduces the
quantization losses.

3. Additional Experiments

Ablation Setups in Main Text. For each line in Tab.2
(main text): (i) We directly subdivide the base mesh up to
the maximum level ℓmax before optimization. The training



iterations and learning rate scheduler remain unchanged.
(ii) The reparameterization is replaced with an additional
Laplacian smooth term with a weight of 1.0. Table 1b shows
more comparisons on smooth term. (iii, iv) We simply re-
move the loss term Lsv or Liso. (v) The visual-guided sub-
division stopping criterion is replaced with Chamfer Dis-
tance.

Base Mesh after Optimization. Our method only relies
on a rough base mesh initialization. To meet the require-
ments of high quality µ-mesh, such as small shell volume,
the base mesh is deformed along with displacements bak-
ing. We demonstrate comparison between the rough ini-
tialization and the optimized result in Fig. 2. The isotropy
gets better after optimization, suggesting the effectiveness
of the as-equilateral-as-possible constraint Liso. Indeed,
our approach can benefit from better initialization when bet-
ter mesh decimation algorithms emerge in the future.

Laplacian Smoothing v.s. Reparameterization. We
demonstrate the quantitative comparison between Lapla-
cian smoothing and reparameterization in Tab. 1b. As indi-
cated, Laplacian smoothing lags behind reparameterization
for all experimented loss weights, among which the weight
1 shows the relatively best results. Figure 3 illustrates a
qualitative comparison between Laplacian smoothing with
weight 1 and reparameterization. The constructed µ-mesh
with Laplacian smoothing exhibits oversmooth and distor-
tion artifacts.

Influence of the λ in Reparameterization. The tunable
parameters λ1 and λ2 control the implicit time of the diffu-
sion process. As indicated by Nicolet et al. [8], large val-
ues of λ dampen high-frequencies, which can impede the
effectiveness to reconstruct local details. Different from
them that all mesh vertices can freely move, in our case,
the µ-vertices are restricted to move along normal direction
with scalar-valued displacements. Due to the small degree
of freedom of µ-vertices, together with the variance-based
shell volume constraint, µ-vertices may have a smaller dis-
tortion impact than vector-valued base vertices. Based on
this insight, the values of λ1 and λ2 are searched inde-
pendently. We investigate the influence of λ1 and λ2, as
shown in Tab. 1c. We experimentally find a configuration
of λ1 = 19 and λ2 = 9 shows the best results.

4. Discussion and Future Work
Self-intersection Free and Poor-isotropy-face Free. We
devise several strategies to meet these properties during µ-
mesh construction: (i) Reparameterization. The diffusion
reparameterization can effectively bias gradient steps to-
wards smooth solutions (without requiring the final solution
to be oversmoothed) [8], as shown in Tab. 1b and Fig. 3. (ii)
Larger λ for base mesh. Larger λ impose smoothness as-
sumption. We only assign smaller λ for tessellated µ-mesh

to reconstruct local details (shown in Tab. 1c), due to the
two properties are mainly related to the base mesh. (iii)
Gradient clip. We employ gradient clip in our implemen-
tation to prevent the exploding gradients. (iv) Isotropy reg-
ularizer, introduced in Sec.3.4.2 and validated in Sec.4.3.
Nevertheless, the gradient-based optimization cannot guar-
antee the fulfillment of these restrictions. Further studies
on imposing strict restrictions at some training milestone is
useful in handling potential corner cases.
Topology. One of limitation of our method is that it doesn’t
support topology modification during optimization, and
thus it relies on a topology-preserving or genus-preserving
mesh decimation. However, aggressive decimation with in-
adequate triangles inevitably breaks the original topology,
so an interaction process with the artist is required to inter-
vene the simplification process. In the future, we will add
the support of handling topology changes [7], which can
further increase the degree of automation of µ-mesh con-
struction.

Concave Structures. Another limitation is that the cameras
are located on a bounding sphere surface, which may cause
the geometry optimization neglects deep concave struc-
tures. A possible solution is to modify the camera trajec-
tory, determined by some measurements of concaveness or
the visibility of base triangles via multi-view rasterization.
We consider this is a common issue for most differentiable
rendering applications, and we will further investigate this
along the above possible avenues.

References
[1] Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and

Bruno Lévy. Polygon mesh processing. CRC press, 2010. 1
[2] Sebastian Claici, Mikhail Bessmeltsev, Scott Schaefer, and

Justin Solomon. Isometry-aware preconditioning for mesh
parameterization. In Computer Graphics Forum, pages 37–
47. Wiley Online Library, 2017. 1

[3] Álvaro González. Measurement of areas on a sphere using
fibonacci and latitude–longitude lattices. Mathematical Geo-
sciences, 42(1):49–64, 2010. 2

[4] Jon Hasselgren, Jacob Munkberg, Jaakko Lehtinen, Miika
Aittala, and Samuli Laine. Appearance-driven automatic 3d
model simplification. In EGSR (DL), pages 85–97, 2021. 2

[5] Julian Knodt, Zherong Pan, Kui Wu, and Xifeng Gao. Joint
uv optimization and texture baking. ACM Transactions on
Graphics, 43(1):1–20, 2023. 2

[6] Shahar Z Kovalsky, Meirav Galun, and Yaron Lipman. Ac-
celerated quadratic proxy for geometric optimization. ACM
Transactions on Graphics (TOG), 35(4):1–11, 2016. 1

[7] Ishit Mehta, Manmohan Chandraker, and Ravi Ramamoor-
thi. A level set theory for neural implicit evolution under
explicit flows. In European Conference on Computer Vision,
pages 711–729. Springer, 2022. 4

[8] Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. Large



steps in inverse rendering of geometry. ACM Transactions
on Graphics (TOG), 40(6):1–13, 2021. 4

[9] NVIDIA. Nvidia ada gpu architecture, 2022. https:
/ / www . nvidia . com / it - it / geforce / ada -
lovelace-architecture, https://images.
nvidia.com/aem- dam/Solutions/geforce/
ada / ada - lovelace - architecture / nvidia -
ada- gpu- architecture- whitepaper- 1.03.
pdf. 3

[10] Michael Rabinovich, Roi Poranne, Daniele Panozzo, and
Olga Sorkine-Hornung. Scalable locally injective mappings.
ACM Transactions on Graphics (TOG), 36(4):1, 2017. 1

[11] Chris Yu, Henrik Schumacher, and Keenan Crane. Repulsive
curves. ACM Transactions on Graphics (TOG), 40(2):1–21,
2021.

[12] Yufeng Zhu, Robert Bridson, and Danny M Kaufman.
Blended cured quasi-newton for distortion optimization.
ACM Transactions on Graphics (TOG), 37(4):1–14, 2018.
1

https://www.nvidia.com/it-it/geforce/ada-lovelace-architecture
https://www.nvidia.com/it-it/geforce/ada-lovelace-architecture
https://www.nvidia.com/it-it/geforce/ada-lovelace-architecture
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/ada-lovelace-architecture/nvidia-ada-gpu-architecture-whitepaper-1.03.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/ada-lovelace-architecture/nvidia-ada-gpu-architecture-whitepaper-1.03.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/ada-lovelace-architecture/nvidia-ada-gpu-architecture-whitepaper-1.03.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/ada-lovelace-architecture/nvidia-ada-gpu-architecture-whitepaper-1.03.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/ada-lovelace-architecture/nvidia-ada-gpu-architecture-whitepaper-1.03.pdf

	. Additional Methodology Details
	. Additional Implementation Details
	. Additional Experiments
	. Discussion and Future Work

