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1. Additional Implementation Details
This section describes additional implementation details,
including training strategies, tiny neural network, pruning
of sphere grid, and importance sampling.

Training Strategies. Given bidirections ωi,ωo and ground
truth reflectance values y that are obtained via measurement
or simulation, the optimization problem is:

argmin
D,Sg,Φ

Eωi,o,y||m(ψ(ωi,ωo;D[Sg]); Φ)− y||. (1)

This cannot be solved directly by usual gradient methods
since the indexing D[Sg] is non-differentiable. To this end,
we use a proxy soften matrix C ∈ R2n×2b from which the
integer indices Sg = argmaxj C[j] can be obtained from
row-wise argmax, following [15]. We can then replace the
hard indexing D[Sg] with a matrix product σ(C)D, where
σ(·) is the softmax function applied row-wise on matrix C.

For efficient training and better convergence, we expect
the argmax results will almost freeze after a training period
and the gradient that is backpropagated from a grid point of
Sg mainly affects single corresponding primitive. That is,
we should adjust the softness during training. Accordingly,
we introduce a tunable temperature hyperparameter τ to the
softmax. We obtain the following optimization problem:

argmin
D,Sg,Φ

Eωi,o,y||m(ψ(ωi,ωo;στ (C)D); Φ)− y||, (2)

where the temperature softmax is στ (xi) =
exp(xi/τ)/

∑
j exp(xj/τ). The hyperparameter τ

controls the softness of the probability distribution. When
τ gets lower, the biggest value in x gets more probability.
In our case, τ is initialized with 1.0 and decreased linearly
with the training epoch until the minimum 0.5. We also use
the straight-through estimator [1] to make the loss be aware
of the hard indexing during training, i.e. we use Eq. (1) for
forward pass and Eq. (2) for backward pass. We jointly
train the codebook entries, the indices, and the MLP by
applying Adam [7]. The learning rate is initialized to 10−2,
which is then decayed using multistep scheduler.
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Figure 1. NeuBRDF trained on sparse measurements. Our ap-
proach can generalize to sparse measurements for both the BRDF
(bottles) [5] and SVBRDF (table cloth) [9]. Bottles: With our grid
pruning, unsupervised pixels are replaced with their parent, result-
ing in a smooth rendering. Table Cloth: NeuBRDF shows faithful
rendering effect compared with the measured counterpart.

Tiny Neural Network. A lightweight neural network is
made possible when the informative features are fed. Our
fully connected neural network comprises of four fully con-
nected layers. The two hidden layers have 128 neurons
each with ReLU activation functions. The output layer re-
duces the 128 dimensions to three RGB values. Moreover,
we add sparsity constraints to the weight matrices in hid-
den layers. After convergence, the 128 neurons in hidden
layers are then structured pruned [6] to 64 neurons. We
then freeze other learnable parameters and only finetune the
pruned neural network.

Importance Sampling. The importance sampling of a re-
flectance model facilities the convergence of Monte Carlo
path tracing. For BRDF, we implement importance sam-
pling with an additional analytic lobe following recent
neural-based works [3, 13]. For SVBRDF and BTF, we use
cosine-hemisphere importance sampling.

Sphere Grid Pruning. The measured database is typically
acquired using a gonioreflectometer with motorized robotic
arms. The acquisition setups, such as the angular reso-
lution of sensors and lights, vary widely among different
databases. Due to the uniform pixelation of our spherical
grid, our framework can adapt to data with different sam-
pling strategies. However, there may be some grid points
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Figure 2. Quality comparison in representing anisotropic ma-
terials from RGL [2] database. Our method well preserves the
highly frequent changes on appearance, especially in the com-
plicated MORPHO-MELENAUS. We show the SSIM value in
top-left corner and SSIM pixel-value in bottom-right, following
NBRDF [13] for fair comparison.

that are never supervised during training. For efficiency
at runtime and meaningful feature query, we discard these
points before deployment. That is, a grid point is removed if
there is no training direction ω locating at the surrounding
four pixels. Recall that the HEALPix is hierarchical, i.e. a
pixel is divided into four at next level, we can thus naturally
replace these four pixels with their parent, which is similar
with pruning an octree in [14].

This pruning strategy is useful for isotropic materials or
sparse measurements. For the isotropic materials, such as
those in MERL [8], only about quarter spherical grids are
preserved after pruning 1. For the sparse measurements, our
method behaves more like an analytic method, where we
can simply infer any given direction, rather than resorting to
time-consuming nearest neighbor search and interpolation
like rendering directly with measured data. Figure 1 depicts
a rendering result of the NeuBRDF model trained on sparse
measurements.

It is expensive to calculate the weights according to the
great-circle distance. We found that 1/4 is sufficient for the
default sphere resolution (Nside = 64). However, for the
sparse measurements that could trigger sphere grid pruning,
we instead use the Euclidean distance for large pixels.

2. Additional Experiments
Anisotropic BRDF. Our sphere data structure is designed to
support both isotropic and anisotropic materials. This flex-

1For isotropic materials, we assign the ωo.ϕ to azimuth difference with
the range [0, π] and leave ωi.ϕ = 0. Therefore, after pruning, about
half pixels are kept in south hemisphere and only pixels surrounding 0
longitude line are kept in north hemisphere.
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Figure 3. Sharing codebook across multiple instances. The dig-
its above images represent the number of instances sharing one
codebook. We show the MSE in top-left corner. (a) Representa-
tion quality degenerates as the size of belonging material group
increases. (b) We demonstrate the ability of neural primitives gen-
eralizing to different colors.

ibility owes much to the factorized design and grid prun-
ing. In Fig. 2, we demonstrate the representation quality of
anisotropic materials from the RGL database. NBRDF [13]
struggles in representing high-frequency changes in some
anisotropic BRDFs (such as MORPHO-MELENAUS) due
to the low frequency spectral bias [12] of the pure-MLP in
NBRDF. In contrast, benefiting from the well-characterized
bidirection encoding, our method can reproduce the high-
frequency reflectance distribution effective.

Sparse Measurements. Rendering a sparse measured
BRDF directly may encounter visual artifact, and a time-
consuming nearest neighbor search is necessary for ren-
dering smooth results. In order to evaluate the scalabil-
ity to sparse measurement of NeuBRDF, we employ sparse
BRDFs database of special coating [5] (hundreds of sam-
ples) and sparse SVBRDF of UBO2019 [9] (100 samples
per pixel). The rendering results are shown in Fig. 1. The
smooth surface reflectance benefits from the inherent hier-
archy of HEALPix, which enables the adaptive grid pruning
for arbitrary sparse measurement.

Shared Codebook. The neural reflectance primitives stored
in a standalone codebook are independent of the per-
instance sphere feature-grid, which offers the opportunity
for maximizing the memory-quality by sharing codebook
between material instances. We illustrate the representation
quality in Fig. 3: (a) shows the degeneration of rendering
quality as the number of instances sharing one codebook
increase; (b) shows the comparison of a cluster of materi-
als represented with and without shared codebook. Figure
8 (top right, in main article) illustrates the overall degener-
ation of MERL when sharing codebook, evaluated on the
raw reflectance data.
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Figure 4. More results rendered with our NeuBRDF.

Performance. The inference speed of our neural re-
flectance model is roughly agnostic to the material. More
results rendered with our reflectance model are shown
in Fig. 4.

3. Discussions
MLP Decoder. From the perspective of implicit neu-
ral functions (INR), the difference between parametric-
encoding methods (e.g., instant-NGP [10]) and ours is ob-
vious in the intention of MLP. Conceptually, the MLP in
our framework is used to parse/decode the factorized com-
ponents (and compensate the losses caused by factoriza-
tion). Whereas for methods with parametric encoding, the
MLPs are typically used for local geometric feature de-
coding [11], multi-resolution aggregation [14], or handling
non-Lambertian effect [10] for neural radiance application.

Importance of Iso-Latitude. For the commonly used Fi-
bonacci sphere pixelation, it’s difficult to get a hemisphere
since it violates the property of iso-latitude and thus there
is no explicit equator. Furthermore, the features (shared
by four quadrilaterals) near the equator are trained on the
samples with imbalanced polar angle distribution due to
the non-iso-latitude pixelation. Because of the changes of
Fresnel term around equator (θ ∼ π/2) are often larger
than those around poles (θ ∼ 0), the reflectance changes
severely, which further overwhelms the shared features.

Hemisphere v.s. Projected Hemisphere or Cubemap.
Essentially, the projected hemisphere is the same as the
hemisphere surface: one uses (r, ϕ), and the other uses
(θ, ϕ) to express a point on the sphere. The grid discretiza-
tion on projected hemisphere should also meet the three re-
quirements: spherical uniform distribution, fast indexing,
and hierarchy. Similarly, for a cubemap, when a uniform
grid on a square is mapped to the sphere, the grid is not
uniformly distributed on the sphere.

The Necessity of the Primitives. The neural reflectance
primitive (i.e. vectors in codebook) is designed to reduce

the memory footprint. Even if only one material is repre-
sented, the lack of this primitive solution can still result in
significant memory overhead. The primitive sharing is de-
signed to maximize the quality-cost tradeoff. A pre-cluster
provides an optional clue about which materials can form a
shared codebook for better results, which, in other words,
means that this step can be omitted. With minor modifica-
tion of the convolutional auto-encoder, the material cluster
is applicable to both of MERL, RGL, and UBO.

Ours vs. Neural Biplane [4]: They encode the half-vector
using a feature grid and leave the difference vector for the
MLP to approximate, thus requiring a heavy MLP decoder
(FLOPs: Ours-10.4k vs. 350k). Additionally, they focus on
BTF, while we aim at a all-purpose representation.
Ours vs. Real-Time Neural Appearance Models [16]:
They only encode the spatial variation (textures) and leave
the ωi,ωo for the MLP to approximate. Neither of these
two recent methods include spherical encoding. In contrast,
the proposed spherical parametric encoding allows us to use
a smaller MLP and achieves real-time performance.

Multiresolution Sphere Grid. The hierarchy is primarily
used to support post grid pruning in our original design, for
isotropic materials and sparse measurements. Interestingly,
we try the multiresolution representation, and find better re-
sults returned in our experiments. However, the behaviour
of ang2pix is not as straightforward as indexing a multi-
resolution octree, where One-ang2pix-Call Multiresolution-
Pixel-Return requires extra computation or memory cost.
As a result, multiresolution sphere grid incurs more eval-
uation cost, for which we finally chose the simplest single
level. Nevertheless, further studies on the multiresolution
structure is promising, based on a better ang2pix strategy.
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