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Supplementary Material

1. Main model implementation details

1.1. Full List of Findings

Beyond the core findings highlighted in the main text, this

section outlines additional key distinctions that set our work

apart from the MegaPortraits model [3].

Model Architecture. Our main model’s structure, depicted

in Figure 4 of the main text, excluding the speech-driven

component, shares a conceptual resemblance with that of

MegaPortraits [3]. However, we have implemented several

architecture alterations. First is the reduction in the dimen-

sionality of the latent expression descriptors from 512 to 128,

a change detailed in Section 4.1. This reduction enhances the

efficiency of the model without compromising the quality of

expression representation. Additionally, we have made com-

prehensive modifications to the architecture and size of the

model’s main components to optimize model’s performance.

These modifications are visually represented in Fig. 1, and

the detailed architectures can be explored in Fig. 8.

Dropout. We have incorporated dropout as a last layer

of Emotion that predicts the expression descriptors (z) in our

model. This implementation serves to improve Emotion’s

capability to construct a more nuanced and robust latent rep-

resentation of facial expressions, and also aids in preventing

overfitting. By ensuring that the model does not become

overly reliant on any element of the latent vector, we achieve

a more generalized and versatile expression representation

capability, essential for dealing with a wide range of facial

motions.

Enhanced Loss Functions. Beyond new loss functions

introduced in the main text, such as the canonical volume

loss (outlined in Section 4.2) and the source-driver mismatch

loss (described in Section 4.3), we have also integrated the

Lhead loss, as mentioned in Section 1.3. This specific loss

function plays a noticeable role in the precise predicting of

facial regions critical for emotional expression, particularly

the eyes and mouth. Additionally, it addresses the previously

noted challenges in accurately generating ears. The integra-

tion of this loss underscores our model’s attention to detail

and commitment to achieving a high degree of realism in

facial expression synthesis.

1.2. Implementation Details

Data Preparation. Our data preparation approach for the

VoxCeleb2 (VC2) dataset [1] follows the protocol estab-

lished in the original model [3]. For our novel FEED dataset,

we cropped frames around the face region and resized them.

The dataset subset used in our experiments, detailed in

Table 1, includes ”Winks,” ”Tongue Emotion,” and ”Ex-

Figure 1. Comparison of our model’s scheme with the MegaPor-

traits scheme, showing the relative sizes of individual components.

treme & Asymmetric Emotion.” Notably, during training, we

did not exploit the multi-view nature of the FEED dataset.

Specifically, in each iteration, both the source and driver

images were selected from the same single-camera video.

Both datasets were employed for training and evaluating our

model at a resolution of 512× 512.

Training Details. Our framework was trained on 8 Nvidia

Tesla A100 GPUs for 250,000 iterations, using a batch size

of 2 per GPU (16 in total). The training data consisted of a

mixture of 75% VC2 examples and 25% FEED examples.

Every second iteration involved a batch comprising one im-

age pair from VC2 and one from the FEED dataset. This

sampling strategy, integrating image pairs from both datasets,

proved more effective than using separate batches from each

dataset. By employing contrastive losses where positive and

negative pairs spanned both datasets, we mitigated overfit-

ting risks associated with the limited identity variety in the

FEED dataset. This approach also facilitated the asymmetric

emotion translation to unseen identities.

1.3. Used losses

Photometrical losses. These are key to aligning the mo-

tion and appearance of the predicted image (x̂s→d) with

the ground truth image (xd). To achieve this, we use three

distinct pre-trained networks:

• VGG19 [12] (ILSVRC/ImageNet [2] Trained): This helps

in matching the overall content of the images.

• VGGFace [9] (Face Recognition Focused): Essential for

aligning facial features accurately.

• Gaze Direction Based on VGG16 [4]: Specifically trained

to emulate a top-notch gaze detection system, ensuring

precise gaze direction matching.

We measure the similarity by calculating the L1 distance

between the feature maps of both the predicted and ground



truth images, utilizing all these networks. Additionally, we

employ face masks for the eyes, mouth, and ears (sourced

from FaceParsing network [16]), focusing our model on

these critical head areas. Then we use these masks to match

mentioned head regions on the predicted and the ground

truth images using L1 loss between pixel corresponded to a

specific region. The final photometric loss combines these

individual perceptual losses, formulated as:

Lpho = wINLIN + wfaceLface + wgazeLgaze + Lhead.

Here, Lhead further breaks down into:

Lhead = weyesLeyes + wmouthLmouth + wearsLears.

Self-supervised losses. As detailed in Section 5, we

trained our expression descriptors using a modified large

margin cosine loss (CosFace) [13], denoted as Lcos and pre-

sented in Equation 5. This approach is similar to the one

employed by the authors of MegaPortraits [3]. Additionally,

we introduced two more losses. The source-driver mismatch

loss Lsdm Equation 3 (described in Section 4.3), which di-

rectly influences the expression’s latent space. This loss is

pivotal in eliminating identity information from the expres-

sion descriptor zi and in preventing overfitting, especially

in the context of our extremely imbalanced dataset. The

combination of these two losses forms our latent space loss:

Llat = wcosLcos + wsdmLsdm.

The second additional self-supervised loss that enhances

the disentanglement of identity and expression is the canon-

ical volume loss LCV (described in Section 4.2 and Equa-

tion 2). This loss functions to extract expression information

from the canonical volume, thereby reducing the overlap of

information contained in VC
i and zi.

Adversarial losses. To ensure the predicted images look

realistic, adversarial losses are computed using the same

predicted and reference images. We follow [3] and train a

multi-scale patch discriminator [20] with a hinge adversarial

loss. To boost training stability, a standard feature-matching

loss is also included ([14]). The GAN loss for the generator

is expressed as:

LGAN = wadvLadv + wFMLFM.

To conclude, the total loss which is used to train our

model is the sum of individual losses:

Lmain = Lpho + Llat + wCVLCV + LGAN. (1)

We utilized the AdamW optimizer [8] with a cosine learn-

ing rate schedule. The initial learning rate was gradually

Figure 2. More selected examples from our FEED dataset.

reduced from 2× 10−4 to 1× 10−6 over the training itera-

tions. The hyperparameters for the losses were set as follows:

wIN = 20, wface = 10, wgaze = 10, wadv = 1, wFM = 40,

wcos = 2, wstd = 1 (increased to 10 for pairs from the FEED

dataset), and wCV = 1. Additionally, we set s = 5 and

m = 0.2 in the cosine loss.

1.4. Visual Comparison

Our choice of baseline methods, as outlined in our experi-

ment section in the main text, was driven by two key factors.

Firstly, these methods are prominent in the field of talking-

head video generation using arbitrary identities, making

them relevant benchmarks for our study. Secondly, the acces-

sibility of their source code and pretrained model weights,

either through public availability or provided by the authors

for use with our test set, was a crucial consideration.

The setup for our visual comparison, as described in Sec-

tion 6.1, was chosen based on specific criteria. We choose

FFHQ images as source images due to the consistent clar-

ity of facial features across the dataset, which is essential

for accurate comparison. Additionally, it was critical to se-

lect identities that were not part of the training datasets for

any of the methods used in comparison. This ensures that

our comparisons are based on novel identities, providing a

fair assessment of each method’s generalization capabilities.

This criterion was also applied in selecting driving identities

from the MEAD and FEED datasets, which were not used in

training by any of the compared methods.

To supplement the comparisons described in the main pa-

per, we provide additional examples for each method (refer

to Figure 5). As, for NOFA [17], the range of examples is

limited due to the restricted number of inferred identities pro-

vided by the authors, we provide a second set of additional

examples excluding NOFA [17] (see Figure 6). Furthermore,

we include a visual comparison Figure 7 for our ablation

study (see Table 4 in the main text).



Figure 3. Comparison of our audio encoder used to predict latent

expression vectors during speech-driven mode.

2. Speech-driven mode

2.1. Implementation details

In this section, we detail the workings of our audio encoder,

Eaud, as depicted in Fig. 4, for its application in speech-

driven scenarios. The encoder, Eaud, is designed for gener-

ating latent expression vectors, denoted as z, from speech

inputs. The scheme of the encoder presented on Fig. 3.

First, we use Whisper [10] model to retrieve audio em-

beddings from a raw audio clip containing speech. This step

yields a series of T audio embedding vectors, where each

vector is linked to a specific frame in the video clip. Next, we

employ a multilayer perceptron (MLP), designated as MLPb,

to compute the base component of our latent expression

vectors, zbase. This base component encapsulates common

facial features such as initial gaze direction and the pose of

the upper facial region, as observed in the first frame of the

input. Then, another MLP, MLPa, is employed. It uses the

previously calculated latent vector z—initially which is z0
for t = 0 and ẑn for t > 0—to align the latent features of z

with those of the audio embeddings and derive features that

useful for final prediction. In the final step, after merging the

relevant audio embedding with the output from MLPa, the

next network, MLPc is utilized and responsible for comput-

ing a part of the vector which, when added to zbase, forms

the final latent expression vector ẑn for each frame.

2.2. Data Preparation

Similar to our primary model, we employ the VoxCeleb2

dataset [1] for training our audio encoder, Eaud. During each

training iteration, we randomly select an audio clip, varying

in length from 50 to 200 frames. The corresponding audio

segment and the initial frame of this clip are fed into Eaud

as inputs. All subsequent frames from the clip are utilized as

reference frames (ground truth) for training purposes. Both

the training and evaluation processes are conducted using a

resolution of 512× 512.

2.3. Utilized Loss Functions

Training of Eaud incorporates three distinct types of loss

functions:

Photometrical Identity Preservation Losses: To ensure

the identity of the individual in the video is preserved, we

apply an L1 loss between the predicted image (using out-

put expression vectors from Eaud, denoted as x̂aud
n ) and the

ground truth image xn. Additionally, we implement a per-

ceptual loss comparing facial features in these images using

the VGGFace model [9]. The identity preservation loss is

represented as:

Lidt = wL1LL1 + wfaceLface

Latent Mouth Movement Losses: For accurately trans-

lating mouth movements, we use an L1 loss focusing on

the principal components related to mouth movements in

ẑn and zn. This loss, detailed in Sec. 5.2, is denoted as

LPCA(zi, zj , n), with n = 8 in our experiments. A secondary

L1 loss, Lvtr, with a reduced weight, ensures a closer match

between ẑn and zn vectors.

Llatent = wPCALPCA + wvtrLvtr

Photometrical Lip Movement Losses: For enhanced

translation of mouth movements, we employ the FaceParsing

network [16] to generate masks for the upper lip, lower

lip, and inner mouth regions in both the predicted (x̂aud
n )

and ground truth (xn) images. These masks are compared

using the Binary Cross Entropy loss, LBCE. Additionally, we

extract pixels corresponding to the mouth in both predicted

and actual images, comparing them using an L1 loss, Llips:

Lmouth = wBCELBCE + wlipsLlips

The overall loss function used to train our model is the

cumulative sum of these individual losses:

Lspeech = Lidt + Llatent + Lmouth (2)

We utilized the AdamW optimizer [8] with a cosine

learning rate schedule. The initial learning rate was grad-

ually reduced from 1 × 10−4 to zero over the training it-

erations. The hyperparameters for the losses were set as

follows: wL1 = 10, wface = 100, wPCA = 200, wvtr = 5,

wBCE = 5 ∗ 103, wlips = 5 ∗ 105.

3. Generating head rotations

To control the main model using head rotations generated

from speech, we have developed a generative adversarial

model. This model takes a speech recording as input and

outputs a series of rotations, as depicted in Fig 4.



Figure 4. Audio-to-rotations model. The input signal is split into

overlapping segments for the audio encoder, processed through a

Transformer and a ResNet decoder. The resulting rotation sequence

and audio input are then given to the Global Content Discriminator,

while the Local Temporal Discriminator receives smaller segments

of these rotations.

3.1. Rotation Representation

We represent the 3D rotations with six dimensions as de-

scribed in [19]. This ensures the continuity of the represen-

tation, which is more suitable for learning. We also add an

extra three parameters to predict the translation. Therefore,

we can formulate a head transformation sequence X as a

sequence of rotations and translation across T consecutive

frames, X ∈ RT×9 where each Xt ∈ R9 is a vector repre-

senting the transformation from the reference frame. To map

the 6D representation again to the 3D rotation group, we can

use the following formula:
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Here N(·) denotes a normalization function and fGS a

Gram-Schmidt process. The model produces a 3x2 matrix

with a1, a2 being its columns. The Gram-Schmidt process in

Equation (4) produces the third column b3 by taking the cross

product of the two first columns b1 and b2, making it nor-

mal to the plane containing them. This process ensures that

the resulting 3x3 matrix is orthogonal. The remaining three

dimensions map directly to the translations by construction.

3.2. Generator

Our generator is split into two components: a context en-

coder and a head pose decoder. The context encoder merges

an audio encoder, Whisper, with a transformer encoder for

temporal analysis. This setup efficiently leverages existing

audio embeddings from other parts of our system. The head

pose is decoded using the encoder’s hidden states, processed

through ResNet layers and an MLP. This converts RT×H to

RT×9, where H is the Transformer’s hidden size.

3.3. Discriminators

To evaluate our generated rotations, we use two discrimina-

tors assessing local and global coherence.

Local Content Discriminator. Inspired by Isola et al. [6],

we use a 1D temporal PatchGAN variant. This discrimina-

tor targets patch-level structures, classifying patches of N

frames as real or fake. With the discriminator convolution

spanning the entire sequence, averaging all responses yields

the final judgment. We found N=8 optimizes frame-to-frame

coherence.

Global Content Discriminator. This discriminator as-

sesses the full sequence’s coherence with the audio input.

We encode the rotation sequence using 1D ResNet blocks

and a global pooling layer, then concatenate it with the audio

embeddings from Whisper. A final MLP layer determines if

the sequence is authentic or generated.

3.4. Losses

To train the model, we use a weighted combination of differ-

ent losses. The resulting loss is described as follows:

Ltot = λreconsLrecons+λadvLadv+λsmoothLsmooth (5)

Reconstruction loss Lrecons . Is a L1 loss between pre-

dicted X and ground-truth Y head poses. The head poses

can be separated into rotation r and translation t.

Lrecons =

T
∑

i=1

|ri − r̂i|+

T
∑

i=1

∣

∣ti − t̂i
∣

∣ (6)

We then have two different coefficient factors λrot and

λtrans for the reconstruction of rotations and translations.

Smoothing loss Lsmooth . Acts as a regularization loss

and ensures smoothness over consecutive frames.

Lsmooth =

T
∑

i=2

|Xi −Xi−1| (7)

Adversarial loss Ladv . We adopt WGAN-GP [5] for

improved stability of the training and for avoiding mode col-

lapse. The discriminator and generator losses are as follows:

LD = Ex̃∼Pg
[D(x̃)]− Ex∼Pr

[D(x)]

+ λEx̂∼Px̂
[(∥∇x̂D(x̂)∥2 − 1)2]

(8)

LG = −Ex̃∼Pg
[D(x̃)] (9)

Px̂ is defined as a uniform sampling along straight lines

between pairs of points sampled from the data distribution

Pr and the generator distribution Pg. We set λ to 10 and

update five times the discriminator for every single update

of the generator as suggested in the original paper.



Source Driver FOMM [11] UVA [7] StyleHEAT [15] MetaPortrait [18] NOFA [17] MegaPortraits [3] Ours

Figure 5. An additional qualitative comparison of head avatar systems in cross-reenactment scenario.

Source Driver FOMM [11] UVA [7] StyleHEAT [15] MetaPortrait [18] MegaPortraits [3] Ours

Figure 6. An additional qualitative comparison of head avatar systems in cross-reenactment scenario.



Source Driver MegaPortraits fine-tuned w/o Ln
CV w/o dim(z) = 512 Lsdm Ours

Figure 7. Visual comparison for our ablation study Fig. 7.

Figure 8. Architectures of main components of our main model
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