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A. More Implementation Details
We implement our method with the Pytorch framework.
Our code is built on the Dassl.pytorch 1 platForm,
which is a principled implementation and evaluation plat-
Form For DA and DG tasks. We train DAMP with a single
NVIDIA GeForce RTX 3090 GPU. Details about network
architecture, data augmentation and pseudo-labels are de-
scribed as follows.

Network Architecture. The text encoder fs and the mu-
tual prompting module G we used are mainly comprised
of a TransFormer encoder and a TransFormer decoder, re-
spectively. Specifically, the standard dot-product attention
is leveraged. Given a set of queries Q ∈ RNq×dk , keys
K ∈ RNk×dk and values V ∈ RNk×dv , the attentional out-
puts For all queries can be calculated by:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V ∈ RNq×dv .

(15)
For Self-Attention (SA), Q,K, V obtained from the same
input sequence I ∈ RN×D, through three projection ma-
trixes Mq ∈ RD×dk ,Mk ∈ RD×dk ,Mv ∈ RD×dv ,

SA(I) = Attention(IMq, IMk, IMv) ∈ RN×dv .
(16)

Multi-Head Self-Attention (MHSA) extends SA by using
multiple attention heads,

MHSA(I) = Concat (head1, . . . ,headh)MO, (17)

where headi = Attention
(
IM i

q, IM
i
k, IM

i
v

)
, h is the

head number, and MO ∈ Rhdv×D maps the intermediate
embeddings to match the input dimension.

For fs, each encoder layer Encj comprised of a MHSA
block and a feed-Forward block FD(·), with h = 8, dk =
dv = D = 512. A residual connection and LayerNorm
operation LN(·) is employed after each of them, i.e.,

Encj(I) = LN(FD(I ′) + I ′),

I ′ = LN(MHSA(I) + I)
(18)

1https://github.com/KaiyangZhou/Dassl.pytorch

For G, a Masked MHSA (M-MHSA) block and Multi-
Head Cross-Attention (MHCA) block is used in each Decl.
Specifically, the M-MHSA alters MHSA by imposing a
mask on the attention scores, i.e.,

M-MHSA(I) = Concat (head1, . . . ,headh)MO,

headi = MaskedAttention
(
IM i

q, IM
i
k, IM

i
v

)
,

MaskedAttention(Q,K, V ) = softmax

(
S ⊙QKT

√
dk

)
,

(19)
where S ∈ RNq×Nk is the mask. The MHCA block is
a variation of MHSA by using different source of Q and
K,V , i.e.,

MHCA(I1, I2) = Concat (head1, . . . ,headh)MO,

headi = Attention
(
I1M

i
q, I2M

i
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i
v

)
.

(20)

Each decoder layer Decl can be Formulated as,

Decl(I1, I2) = LN(FD(I ′′1 ) + I ′′1 ),

I ′′1 = LN(MHCA(I1, I2) + I1),

I ′1 = LN(M-MHSA(I1) + I1).

(21)

We use dk = dv = D = 256 and h = 4 For the de-
coder. The InProj and OutProj are two linear layers
with LayerNorm operations. In this work, we use the same
G For language-guided visual prompting and vision-guided
language prompting since the two modalities are aligned in
the CLIP embedding space. Therefore, they can attend to
each other by freely change the position in Decl.

Data augmentations. In this work, we use random
flip as a simple weak augmentation operation. For strong
augmentation, we select two random operations For each
sample from the RandAugment library [3], which includes
invert, rotation, color enhancing, auto contrast and other
transFormations. Randomly selecting and combining these
strong augmentations is intended to simulate the diverse do-
main shifts that can occur in real-world data.

Pseudo-label. For previous methods that incorporate
domain-specific tokens in the textual prompt, obtaining
pseudo-labels for the target domain is challenging. On one
hand, the domain-specific prompts are not transferable, i.e.,
we cannot obtain high-quality target pseudo-labels with the
learned source-specific prompts. On the other hand, without
high-quality pseudo-labels, learning target-specific prompts
becomes an ill-posed problem. To circumvent this prob-
lem, DAPrompt only [7] uses a naive textual prompt, i.e.,
“a photo of a [CLS]. a [Domain] image.” to obtain pseudo-
labels, where [CLS] and [Domain] are the name of each



Algorithm 1 Training Procedure of DAMP For UDA.

Require: Labeled source dataset Ds, unlabeled target
dataset Dt, total training epochs E, iteration number
per epoch Ne.

Ensure: Optimal p1:N , γv , γs and G.
1: Initialize parameters for p1:N , γv , γs and G.
2: for t = 1 to E do
3: for i = 1 to Ne do
4: Sample a source batch Bs ∼ Ds and a target

batch Bt ∼ Dt

5: obtain {s′k}Kk=1 and v′ for each x ∈ Bs ∪ Bt

according to Eq. (6) and (4).
6: Calculate Ls

sup and Lt
sup according to Eq. (12)

and (13).
7: Calculate Ls

sc and Lt
sc according to Eq. (9) and

(10).
8: Calculate Lidc within Bs and Bt respectively ac-

cording to Eq. (8) and sum them up.
9: Calculate Lim according to Eq. (11).

10: Update parameters via optimizing Lall.
11: end for
12: end for
13: Return final model parameters p1:N , γv , γs and G.

class and each domain, respectively. This resuls in knowl-
edge isolation between the two domains.

In this work, we learn shared prompts For both domains.
This allows us to leverage the rich source domain knowl-
edge to pseudo-label the target domain. However, we found
that in the early stages of training, the source domain model
is not yet well-trained, resulting in low-quality pseudo-
labels. To address this, we propose combining prior knowl-
edge with the source knowledge to obtain better pseudo-
labels. Specifically, we first generate a naive textual prompt
to produce naive soft pseudo-labels ỹti for each target sam-
ple yti . We also generate source-enabled soft pseudo-labels
ẏti from the model outputs according to Eq. (7). The final
pseudo label is an ensemble of both:

ŷti = (1− α)ỹti + αẏti . (22)

The weight α is gradually increased from 0 to 1 during
training. Weighting the naive and source-enabled pseudo-
labels via the α enables a smooth transition from relying
more on the prior knowledge to relying more on the source-
knowledge as training progresses.

B. Algorithm

To better understand our method, we summarize the training
procedure of DAMP for UDA in Algorithm 1.

C. Experiments on Multi-Source UDA
To evaluate the versatility of our method in various domain
adaptation scenarios, we extend our method to the multi-
source domain adaptation (MSDA) setting.

Datasets. We evaluate our method on two widely used
MSDA datasets. Specifically, we reuse the Office-Home
[18] dataset for MUDA by combining arbitrary 3 domains
as source domains and regard the rest domain as the tar-
get domain, which forms 4 adaptation tasks (→Ar, →Cl,
→Pr, →Rw). DomainNet [12] is the lagest and the most
challenging dataset for domain adaptation. It consists of 6
diverse domains, including Clipart, Painting, Real, Sketch,
Quickdraw and Infograph. These domains encompass a
wide range of visual styles, making the dataset challeng-
ing for domain adaptation tasks. Similar to Office-Home, 6
tasks are constructed for MSDA.

Experimental Setup. It is a natural extension to apply
our method to the MSDA setting, where the goal is to learn
a shared set of prompts across all source domains and the
target domain. Specifically, we extend Lsup and Lsc to
include losses on all source domains. We treat each do-
main with equal importance. For Lidc, we obtain a batch
of samples from each domain in each iteration, and com-
pute Lidc within each domain batch. The utilization of do-
main labels in this process distinguishes our method from
other single-source domain adaptation methods which sim-
ply mix the source domains. For convenient comparison
with previous methods, we use the ResNet-50 backbone on
Office-Home and ResNet-101 on DomainNet. Other train-
ing configurations remain consistent with those employed
in single-source UDA, as detailed in Sec. 4.

Experimental Results. The results on DomainNet are
reported in Table 6. DAMP achieves the best average ac-
curacy of 57.8%, outperforming the previous state-of-the-
art MPA by 3.7%. This demonstrates the effectiveness of
DAMP on multi-source domain adaptation. Compared to
single-source methods like DANN, MCD and DAPrompt,
DAMP brings substantial gains, improving over DAPrompt
by 5.8%. This shows the benefits of domain-agnostic
prompts and exploiting multiple source domains in our
method. Besides, DAMP also surpasses other multi-source
domain adaptation methods such as M3SDA-β, SImpA,
LtC-MSDA and T-SVDNet by a large margin. Notably,
DAMP achieves the best performance on 5 out of 6 tasks.
The consistent improvements over competitive baselines
validate the robustness of DAMP.

On Office-Home (Table 7), we can observe that DAMP
again achieves state-of-the-art accuracy (79.2%), outper-
forming the closest competitor MPA by 3.8%. Com-
pared to single-source methods, DAMP brings significant
gains over 6.4% over DAPrompt, showing the benefit of
learning domain-agnostic prompts in the multi-source set-
ting. DAMP surpasses other multi-source domain adapta-



Table 6. Classification accuracies (%) on DomainNet for MSDA with ResNet-101. * Prompt learning-based methods.

Method →Clipart →Infograph →Painting →Quickdraw →Real →Sketch Avg.

Zero-Shot
CLIP [13] 61.3 42.0 56.1 10.3 79.3 54.1 50.5

Source Combined
DANN [6] 45.5 13.1 37.0 13.2 48.9 31.8 32.6
MCD [15] 54.3 22.1 45.7 7.6 58.4 43.5 38.5
DAPrompt * [7] 62.4 43.8 59.3 10.6 81.5 54.6 52.0
CoOp * [22] 63.1 41.2 57.7 10.0 75.8 55.8 50.6

Multi-Source
M3SDA-β [12] 58.6 26.0 52.3 6.3 62.7 49.5 42.6
SImpAI101 [17] 66.4 26.5 56.6 18.9 68.0 55.5 48.6
LtC-MSDA [19] 63.1 28.7 56.1 16.3 66.1 53.8 47.4
T-SVDNet [10] 66.1 25.0 54.3 16.5 65.4 54.6 47.0
PFSA [5] 64.5 29.2 57.6 17.2 67.2 55.1 48.5
PTMDA [14] 66.0 28.5 58.4 13.0 63.0 54.1 47.2
MPA * [2] 65.2 47.3 62.0 10.2 82.0 57.9 54.1
DAMP * (Ours) 69.7 51.0 67.5 14.7 82.5 61.5 57.8

Table 7. Classification accuracies (%) on Office-Home for MSDA
with ResNet-50. * Prompt learning-based methods.

Method →Ar →Cl →Pr →Rw Avg.

Zero-Shot
CLIP [13] 71.5 50.2 81.3 82.4 71.4

Source Combined
DAN [11] 68.5 59.4 79.0 82.5 72.4
DANN [6] 68.4 59.1 79.5 82.7 72.4
CORAL [16] 68.1 58.6 79.5 82.7 72.2
DAPrompt * [7] 72.8 51.9 82.6 83.7 72.8
CoOp * [22] 70.7 52.9 82.9 83.9 72.4

Multi-Source
MDDA [21] 66.7 62.3 79.5 79.6 71.0
SImpAI50 [17] 70.8 56.3 80.2 81.5 72.2
MFSAN [23] 72.1 62.0 80.3 81.8 74.1
MPA * [2] 74.8 54.9 86.2 85.7 75.4
DAMP * (Ours) 77.7 61.2 90.1 87.7 79.2

tion methods like MDDA, SImpA and MFSAN by solid
margins. Furthermore, by comparing with the results for
single-source UDA (Table 1), we can observe that for any
target domain, using multiple source domain data is better
than using only one source domain. This validates that our
method indeed utilizes source knowledge effectively.

D. Experiments on Doamin Generalization

We show that with only minor changes, our method can also
be used for domain generalization tasks.

Datasets. We use four popular DG datasets in this ex-
periment, namely, VLCS [4], PACS [9], Office-Home [18]
and TerraIncognita [1]. VLCS contains images from PAS-
CAL VOC 2007 (V), LabelMe (L), Caltech (C) and SUN
(S). There are 5 object categories shared by all domains:
bird, car, chair, dog and person. PACS collects totally 9,991
images from Photo (P), Art painting (A), Cartoon (C) and

Sketch (S) with 7 common categories. Office-Home is orig-
inally used in domain adaptation, which contains images
from Art (Ar), Clipart (Cl), Product (Pr) and Real-World
(Rw) across 65 categories. TerraIncognita comprises a
collection of wildlife photographs captured by cameras at
various locations. We follow [8] to use 4 locations, i.e.,
{L38, L43, L46, L100}, for the DG task, which have to-
tally 24,788 samples of 5 classes.

Experimental Setup. For the DG task, we implement
our method on DomainBed 2, a standard DG benchmark in
the community. We strictly follow [8] to split each domain
into 80% training data and 20% validation data, and use
standard training-domain validation for model selection.
The results are obtained by three trials with seed={1,2,3}.

Different from domain adaptation, in DG we cannot ac-
cess any target sample during training. Therefore, we re-
move Lim and target-related terms in Lsup, Lsc and Lidc

for optimization. In this scenario, our method aims to elicit
domain-invariant visual embeddings from multiple source
domains and instance-compatible text embeddings for clas-
sification. Due to the absence of the target domain, large-
scale pre-trained knowledge becomes more important in
DG. Therefore, CLIP-based methods will have significantly
better results than traditional ones. For fair comparison, all
compared baselines are built on CLIP, and we use the ViT-
B/16 vision backbone for all datasets following [20].

Specifically, there are three categories of baselines for
comparison. The first category of methods fine-tune the im-
age encoder of CLIP using common DG algorithms (e.g.,
like ERM, DANN) and freeze the text encoder for clas-
sification. The second category directly use the zero-shot
ability of CLIP and prompt the text encoder with manually
designed prompts (‘a photo of [CLS]’) for classification.

2https://github.com/facebookresearch/DomainBed



Table 8. Classification accuracies (%) on VLCS, PACS, Office-Home, and TerraIncognita for domain generalization. The best results are
highlighted in bold. All compared methods are implemented based on CLIP with ViT-B/16 backbone.

Method VLCS PACS Office-Home TerraInc Avg

Fine-tuning (CLIP)
ERM 82.7 ± 0.3 92.9 ± 1.9 78.1 ± 2.1 50.2 ± 1.7 75.9
CORAL [16] 82.0 ± 0.2 93.2 ± 1.1 78.9 ± 1.9 53.5 ± 0.7 76.9
DANN [6] 83.2 ± 1.2 93.8 ± 1.3 78.8 ± 1.1 52.2 ± 2.0 77.0

Zero-shot
CLIP [13] 82.3 ± 0.1 96.1 ± 0.1 82.3 ± 0.2 34.1 ± 0.1 73.7

Prompt Learning
DPL [20] 84.3 ± 0.4 97.3 ± 0.2 84.2 ± 0.2 52.6 ± 0.6 79.6
DAMP (Ours) 84.5 ± 0.3 97.4 ± 0.2 85.0 ± 0.4 53.7 ± 0.2 80.2

The third category resorts to learnable prompts for adapt the
pre-trained CLIP to specific domains. For our method, the
hyperparameter configuration is consistent with the ones in
UDA and MSDA.

Experimental Results. We report the mean accuracies
as well as standard derivation on four datasets in Table 8.
Our DAMP achieves the best average accuracy of 80.2%
across all datasets. Compared to fine-tuning-based methods
like ERM, CORAL and DANN, DAMP brings significant
improvements of 4.3%, 3.3% and 3.2% respectively in av-
erage accuracy. We conjecture the reason is that large-scale
pre-training is a very effective approach to bridge the do-
main gap. However, fine-tuning the image encoder is prone
to destroy the pre-trained knowledge encoded in CLIP. This
demonstrates the superiority of adapting pre-trained mod-
els via prompt learning over fine-tuning for domain gen-
eralization. On the other hand, DAMP also surpasses the
vanilla zero-shot CLIP model by 6.5%, showing the bene-
fits of learning adaptive prompts compared to relying solely
on pre-trained knowledge. Compared with DPL that only
prompts the text encoder, our method prompts both vision
and textual modalities for generalizing both visual images
and textual semantics to unseen domains. Besides, two reg-
ularizations (i.e., Lidc and Lsc) encourage the embeddings
to be more domain-agnostic, thus outperforming DPL on
all datasets. Even though the margins appear small, i.e.,
0.6% over DPL, it is well-recognized that further advancing
the state-of-the-art on DG benchmarks is extremely chal-
lenging. Even slight gains of 1% are considered significant
and difficult in the DG community, which typically indicate
non-trivial improvements in the robustness and generaliza-
tion abilities of the model across diverse domains.

E. Additional Analytical Experiments for UDA
E.1. Confusion Matrix Visualization

To illustrate how our method benefits UDA, we visualize the
confusion matrixes obtained by different methods in Fig. 6.

We can observe that directly using the zero-shot classifica-
tion capability of CLIP can easily lead to confusion between
categories. For instance, the model may easily predict ”car”
as ”bus” or ”truck,” or predict ”bicycle” as ”motorcycle”,
because these categories are conceptually similar. In con-
trast, DAPrompt adjusts the textual semantics of categories
specifically for each domain (dataset), making it clearer to
distinguish the semantic differences between categories and
to some extent alleviating the confusion problem. However,
DAPrompt does not perform any adaptation in the visual
modality, making it susceptible to domain shifts in the vi-
sual modality. Additionally, DAPrompt uses class-level se-
mantic embeddings for classification, which does not take
into account variations within categories. Imagine if the vi-
sual embedding of a truck in the multimodal space is closer
to the semantic representation of ”bus” than ”truck.” In this
case, DAPrompt would have no way of classifying it as a
truck. In contrast, our method allows the semantic embed-
dings to dynamically adjust their positions based on visual
cues for each sample, providing a customized set of seman-
tic embeddings for classification, and therefore performs
better in disambiguation compared to CLIP and DAPrompt.

E.2. Effectiveness of the Pseudo-label Strategy

To evaluate the effectiveness of our ensemble-based
pseudo-label strategy described in Appendix. A, we con-
duct experiments to compare with other two pseudo-label
strategies, i.e., using the naive prompts (‘a photo of a
[CLS]’) for zero-shot prediction and using the learned
prompts p1:N with post-model multual prompting. The for-
mer strategy is used in DAPrompt [7] and the latter is the
outputs of our model. As shown in Fig. 7, we can ob-
serve a common phenomenon across all tasks. Initially,
due to the zero-shot capability of CLIP, it can provide high-
quality pseudo-labels for the target domain samples, result-
ing in high accuracy achieved in the first epoch for learned
prompts. However, as the proportion of zero-shot pseudo-
labels is still high at this point, the accuracy of the ensem-



Gr
ou

nd
 T

ru
th

Predict: Original CLIP Predict: Prompting with DAPrompt Predict: Prompting with DAMP (Ours)

Gr
ou

nd
 T

ru
th

Gr
ou

nd
 T

ru
th

Figure 6. Visualization of confusion matrixes yield by different methods on VisDA-17 dataset with ViT-B/16 backbone.
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Figure 7. Pseudo-label accuracies of different strategies. We choose four tasks on Office-Home as examples (ResNet-50).

ble pseudo-labels remains lower than that of the learned
prompt-based pseudo-labels. As training progresses (af-
ter 10 epochs), the ensemble pseudo-labels outperforms the
other two strategies. We conjecture the reason is that the
incorporation of certain prior knowledge (naive prompts)
helps alleviate the risk of overfitting the learned prompts to
the source domain. This enables the model to achieve ac-
curacy that cannot be attained by relying solely on learned
prompts for pseudo-labeling. Finally, the accuracy of the
ensemble gradually converges towards the accuracy of the
learned prompts.

E.3. Effectiveness of Parameter-Sharing Strategy

Table 9 shows the impact of parameter-sharing G on the
performance of our method. It turns out that the parameter-
sharing strategy (w/ PS) slightly outperforms the version
without parameter-sharing (w/o PS) on both vision back-
bones. Parameter-sharing enables a single prompting mod-
ule G to transform both visual and textual embeddings
bidirectionally. This allows richer cross-modal interactions
and fusion between the modalities, eliciting better domain-
and modality-shared representations. In contrast, without
parameter-sharing, the promptings of vision of vision and
text modalities will be more independent, and more tunable
parameters make it difficult to train and less effective. The
consistently positive gains across various backbones indi-
cate that parameter-sharing is an effective and generalizable

design choice for mutual prompting in DAMP. It enables a
single compact module to prompt both modalities flexibly
for domain adaptation.
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