
Supplementary Materials of “iKUN: Speak to Trackers without Retraining”

Yunhao Du1, Cheng Lei1, Zhicheng Zhao1,2,3*, Fei Su1,2,3

1The school of Artificial Intelligence, Beijing University of Posts and Telecommunications
2Beijing Key Laboratory of Network System and Network Culture, China

3Key Laboratory of Interactive Technology and Experience System Ministry
of Culture and Tourism, Beijing, China

{dyh bupt,mr.leicheng,zhaozc,sufei}@bupt.edu.cn

A. Details of KUM

Table 1. Notations.

Variable explanation defaults
B batch size 8
T temporal window size 8
L description length 10
n number of cross attention heads 4
k convolution kernel size 1
p dropout ratio 0.1
Cv visual feature dimension 2048
Ct textual feature dimension 1024
h,w spatial size of local feature map 7,7
H,W spatial size of global feature map 21,21

We detail the three designs of KUM in this section.
The input of KUM includes visual global feature fglobal ∈
RBT×HW×Cv , visual local feature flocal ∈ RBT×hw×Cv ,
and textual feature ft ∈ RB×1×Ct (or f ′t ∈ RB×L×Ct be-
fore squeezing). Then it outputs the unified feature funi ∈
RBT×Cv . The notations are summarized in Table 1.
Cascade Attention. The cascade attention design is mainly
implemented by two hierarchical cross attention layers with
n heads. The first cross attention is utilized to aggregate the
two visual features with residual adding by:

fvis = flocal + CrossAtt(flocal, fglobal, fglobal)

∈ RBT×hw×Cv ,
(1)

where flocal is taken as query and fglobal is the key and
value. The hidden embedding dimension is set to Cv . Then
f ′t is repeated T times and transformed by a linear layer, re-
sulting in ftxt ∈ RBT×L×Cv . fvis and ftxt are aggregated
by the second cross attention layer with residual multiplica-

*Corresponding author

tion by:

f ′uni = flocal ∗ CrossAtt(flocal, ftxt, ftxt)

∈ RBT×hw×Cv .
(2)

Finally, a spatial global average pooling layer is applied to
output the final unified feature by:

funi = AvgPool(f ′uni) ∈ RBT×Cv . (3)

Cross correlation. The cross correlation design mainly
consists of a cross attention operation and a dynamic con-
volution operation. The first step is the same as “cascade
attention” by:

fvis = flocal + CrossAtt(flocal, fglobal, fglobal)

∈ RBT×hw×Cv ,
(4)

Then ft is repeated T times, and then processed by a con-
volution layer with kernel size k and a batch normalization
layer to estimate the dynamic kernel [1] by:

fkernel = BN(Conv(Repeat(ft))) ∈ RBT×1×Cv . (5)

Afterwards, the cross correlation is performed on between
fvis and fkernel. It is implemented by a depth-wise convo-
lution by:

fcross = DepthConv(fvis; fkernel) ∈ RBT×hw×Cv , (6)

where fvis is the input feature map and fkernel is taken as
the convolution kernels. Then a dropout layer with a ratio
of p with residual adding is applied by:

fdrop = fcross +Drop(fcross) ∈ RBT×hw×Cv . (7)

Another convolution layer with kernel size k and a batch
normalization layer are followed by:

f ′uni = BN(Conv(fdrop)) ∈ RBT×hw×Cv . (8)

1



Finally, a spatial global average pooling layer is applied to
output the final unified feature by:

funi = AvgPool(f ′uni) ∈ RBT×Cv . (9)

Text-first modulation. The text-first modulation design
mainly includes a modulation operation and a cross atten-
tion operation. The ft is first repeated T times, and then
processed by a convolution layer with kernel size k and a
batch normalization layer by:

fr = BN(Conv(Repeat(ft))) ∈ RBT×1×Cv . (10)

Then it is repeated H ×W times to modulate fglobal with
dropout of ratio p and residual multiplication by:

f ′global = fglobal ∗Drop(Repeat(fr))

∈ RBT×HW×Cv .
(11)

The similar operation is utilized to modulate flocal by:

f ′local = flocal ∗Drop(Repeat(fr))

∈ RBT×hw×Cv .
(12)

Afterwards, a cross attention layer with residual adding is
followed by:

f ′uni = flocal + CrossAtt(f ′local, f
′
global, fglobal)

∈ RBT×hw×Cv ,
(13)

where f ′local is query, f ′global is key and the raw fglobal is
value. Finally, a spatial global average pooling layer is ap-
plied to output the final unified feature by:

funi = AvgPool(f ′uni) ∈ RBT×Cv . (14)

B. Refer-Dance
We introduce the details of Refer-Dance in this section.

Refer-Dance is extended from DanceTrack [2] by adding
description annotations and follows the same data split pro-
tocol. That is, 40 videos with 39 distinct descriptions are
used for training and 25 videos with 17 distinct descriptions
are used for testing. The dataset follows the open-set set-
ting, in which test descriptions don’t necessarily appear in
the training set. The long-tail distribution of textual descrip-
tions is visualized in Fig.1. Refer to Fig.2 for some visual-
ization examples.

References
[1] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V

Gool. Dynamic filter networks. Advances in neural infor-
mation processing systems, 29, 2016. 1

[2] Peize Sun, Jinkun Cao, Yi Jiang, Zehuan Yuan, Song Bai, Kris
Kitani, and Ping Luo. Dancetrack: Multi-object tracking in
uniform appearance and diverse motion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20993–21002, 2022. 2

(a) train set

(b) test set

Figure 1. The distribution of descriptions on Refer-Dance.

Figure 2. Visualization examples of Refer-Dance.


	. Details of KUM
	. Refer-Dance

